|
[1] D. Rats, D. Poitras, J. Soro, L. Martinu, and J. Von Stebut, "Mechanical properties of plasma-deposited silicon-based inhomogeneous optical coatings," Surface and Coatings Technology, vol. 111, pp. 220-228, 1999. [2] ITRPV. (2018). ITRPV Ninth Edition 2018 including maturity report. Available: http://www.itrpv.net [3] counterpointresearch. (2018). Counterpoint Research Market Monitor 2018. Available: https://report.counterpointresearch.com/posts/report/Monitor [4] W. Que, Q. Zhang, Y. Chan, and C. Kam, "Sol-gel derived hard optical coatings via organic/inorganic composites," Composites science and technology, vol. 63, pp. 347-351, 2003. [5] C.-R. Lin, D.-H. Wei, C.-K. Chang, W.-H. Liao, and K. R. Peng, "Diamond-like carbon films deposited at room temperature on flexible plastics substrates for antireflection coating," Japanese journal of applied physics, vol. 50, p. 035802, 2011. [6] J. Weber, H. Bartzsch, and P. Frach, "Sputter deposition of silicon oxynitride gradient and multilayer coatings," Applied optics, vol. 47, pp. C288-C292, 2008. [7] W. S. Choi, K. Kim, J. Yi, and B. Hong, "Diamond-like carbon protective anti-reflection coating for Si solar cell," Materials Letters, vol. 62, pp. 577-580, 2008. [8] V. Aroutiounian, K. Martirosyan, and P. Soukiassian, "Almost zero reflectance of a silicon oxynitride/porous silicon double layer antireflection coating for silicon photovoltaic cells," Journal of Physics D: Applied Physics, vol. 39, p. 1623, 2006. [9] 李正中, "薄膜光學與鍍膜技術," 2017. [10] S. M. Rossnagel, J. J. Cuomo, and W. Westwood, Handbook of Plasma Processing Technology: Fundamentals, Etching, Deposition, and Surface Interactions (Materials Science and Process Technology)(Berkshire, UK: Noyes): Noyes Publications, 1990. [11] V. Kouznetsov, K. Macak, J. M. Schneider, U. Helmersson, I. J. S. Petrov, and c. technology, "A novel pulsed magnetron sputter technique utilizing very high target power densities," Surface and Coatings Technology vol. 122, no. 2-3, pp. 290-293, 1999. [12] A. Ehiasarian, W.-D. Münz, L. Hultman, U. Helmersson, and I. Petrov, "High power pulsed magnetron sputtered CrNx films," Surface and coatings technology, vol. 163, pp. 267-272, 2003. [13] J. A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings," Journal of Vacuum Science and Technology, vol. 11, pp. 666-670, 1974. [14] A. Anders, "A structure zone diagram including plasma-based deposition and ion etching," Thin Solid Films, vol. 518, pp. 4087-4090, 2010. [15] K. Sarakinos, J. Alami, and S. Konstantinidis, "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art," Surface and Coatings Technology, vol. 204, pp. 1661-1684, 2010. [16] U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, "Ionized physical vapor deposition (IPVD): A review of technology and applications," Thin solid films, vol. 513, pp. 1-24, 2006. [17] L. Shenchang Electric Co. (2018). SPIK2000A Tutorial PPST. Available: https://www.shenchang.com.tw/sara/SPIK2000A%20Tutorial%20PPST.pdf [18] 張瑞慶. 奈米壓痕技術與應用. Available: www.stam.org.tw/newsletter2a.php?SN=32&opp=download1 [19] H. Dun, P. Pan, F. R. White, and R. W. Douse, "Mechanisms of Plasma‐Enhanced Silicon Nitride Deposition Using SiH4/N 2 Mixture," Journal of the Electrochemical Society, vol. 128, pp. 1555-1563, 1981. [20] J. Z. Zheng, D. Tan, P. Chew, and L. H. Chan, "Characterization and in-line control of UV-transparent silicon nitride films for passivation of FLASH devices," in Process, Equipment, and Materials Control in Integrated Circuit Manufacturing II, 1996, pp. 63-71. [21] Y. Liu, I.-K. Lin, and X. Zhang, "Mechanical properties of sputtered silicon oxynitride films by nanoindentation," Materials Science and Engineering: A, vol. 489, pp. 294-301, 2008.
|