(3.237.20.246) 您好!臺灣時間:2021/04/15 13:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:唐俊皓
研究生(外文):Chun-How Tang
論文名稱:複合薄膜鈍化接觸技術應用於矽基PN結構光偵測器之研究
論文名稱(外文):Compound Films of Passivated Contact Technology Development and Application for Si-Based PN Structure Photodetectors
指導教授:張正陽張正陽引用關係
指導教授(外文):Jenq-Yang Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:51
中文關鍵詞:光偵測器氧化矽氮化矽複合薄膜鈍化接觸
外文關鍵詞:Photodetectorsilicon oxidesilicon nitridecompound filmpassivated contact
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著光電產業的的發展,當效能到一定瓶頸時,鈍化層的出現讓光電元件效能大幅提升,但金屬和半導體間並沒有鈍化層的存在,便有研究團隊研究出用局部開孔的方式完成鈍化,但開孔處會導致嚴重的載子復合,於是鈍化接觸的技術便應運而生。薄膜是鈍化接觸的關鍵,而當單層鈍化接觸薄膜研發到一定水準時,單層的結構已無法滿足元件的需求,於是複合結構的鈍化接觸薄膜便被提出,複合式的鈍化接觸薄膜可以比單層鈍化接觸有著更好的鈍化效果,故本研究將其應用到光偵測器,並研究其元件特性。
本研究選擇使用濕式化學氧化法的方式製備氧化矽薄膜,以調整不同參數條件,找出緻密度最高及較低漏電流的氧化矽薄膜。接著再將氮化矽薄膜覆蓋於氧化矽之上以達到複合鈍化接觸之效果。再經過快速熱退火的處理,發現在溫度500°c時,複合薄膜的鈍化效果最好,有著最高的生命週期1021.25μs、iVoc為652.4mV,而為了提升載子傳輸的效果且因為氮化矽有著較高的介電係數,便嘗試降低氮化矽薄膜的厚度,形成超薄型複合鈍化接觸薄膜。
最後將上述鈍化接觸薄膜應用於光偵測器元件中,再覆蓋上透明導電薄膜氧化銦錫提升響應度。而研究結果發現應用氧化矽1.5nm、氮化矽厚度為1.7nm所製成的複合鈍化接觸時,元件有著最佳的鈍化效果,光偵測器的暗電流可以從4.36x10-7A降低至8.25x10-9A,在850nm波長的雷射光源下,光響應度也具有0.582A/W的水準。
With the development of the optoelectronic industry, when the performance reaches a certain bottleneck, the appearance of the passivation layer greatly improves the performance of the optoelectronic components. However, there is no passivation layer between the metal and the semiconductor, some research teams have studied to complete the passivation by means of local opening. However, the opening of the hole will cause serious carrier recombination, therefore the technique of passivating contact will come into being. The thin film is the key to passivation contact. When the single-layer passivated contact film is developed to a certain level, the structure of the single layer cannot meet the requirements of the component, so the passivation contact film of the compound film is proposed. The composite passivation contact film has better passivation effect than the single-layer passivation contact, so this study applied it to the photodetector and studied its component characteristics.
In this study, we use wet chemical oxidation method to grow silicon oxide film, and we try the different parameters of wet chemical oxidation method to find the best silicon oxide film with the highest density and low leakage current. Then silicon nitride film is deposited on the silicon oxide film to achieve the effect of compound film of passivation contact. After rapid thermal annealing treatment, it is found that the compound film has the best passivation effect at 500 °C, with the highest lifetime of 1021.25μs and iVoc of 652.4mV. Then we will fabricate the devices of different silicon nitride thickness and measure their electrical properties.
Finally, the compound film of passivation contact is applied to the silicon-based photodetector. Indium tin oxide was deposited on compound films for improving the responsibility. The results show that when the compound film of passivation contact is made by using silicon oxide 1.5nm of thickness and silicon nitride 1.7nm, it has the best passivation effect, and the dark current of the photodetector can be reduced from 4.36x10-7A to 8.25x10-9A, photon responsibility of 0.582 A/W at a laser light source of 850 nm.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
• 1-1前言 1
• 1-2 研究動機 3
• 1-3 研究目的與架構 3
第二章 基本原理及文獻回顧 4
• 2-1基本原理 4
• 2-1-1 PN結構光偵測器 4
• 2-1-2 透明導電薄膜 5
• 2-1-3 鈍化及鈍化接觸原理 5
• 2-1-4 缺陷電荷及介面狀態密度 6
• 2-1-5 介面缺陷密度Dit計算 9
• 2-2複合薄膜文獻回顧 12
第三章 實驗流程、設備及分析儀器 14
• 3-1 薄膜製備 14
• 3-1-1 極薄氧化層 14
• 3-1-2 薄型氮化矽層 15
• 3-1-3 透明導電薄膜 16
• 3-1-4 後退火 16
• 3-2光偵測器 17
• 3-2-1 PN結構 17
• 3-2-2 清洗晶圓 17
• 3-2-3 薄膜 18
• 3-2-4 後退火 18
• 3-2-5 透明導電薄膜 18
• 3-2-6 第一道曝光顯影 18
• 3-2-7 蝕刻 19
• 3-2-8 第二道曝光顯影 19
• 3-2-9 電極 19
• 3-3 實驗設備 20
• 3-3-1 快速退火爐(ARTs-RTA) 20
• 3-3-2 電漿輔助化學氣相沈積系統 (SAMCO PECVD) 20
• 3-3-3 活性離子蝕刻機 (Reactive-ion-etching) 21
• 3-3-4 紫外光臭氧清洗機(UV-Ozone Stripper) 22
• 3-3-5 離子濺鍍機(Sputtering) 23
• 3-3-6 光罩對準曝光機(Mask Aligner 6) 23
• 3-3-7 高真空電子束暨熱阻式蒸鍍系統 (E-gun / Thermal) 24
• 3-4 分析儀器介紹 25
• 3-4-1 四點探針 (Four-point Probe) 25
• 3-4-2 光電導生命週期量測儀 (MWPCD) 25
• 3-4-3 光電子能譜儀 (x-ray photoelectron spectroscopy ,XPS) 26
• 3-4-4 場放射掃描式電子顯微鏡 (Scanning Electron Microscope) 27
• 3-4-5 電流-電壓特性曲線量測 (I-V Characteristics curve) 28
• 3-4-6 電容-電壓特性曲線量測 (C-V Characteristics curve) 28
• 3-4-7 傅里葉轉換紅外光譜儀 (FT-IR) 28
• 3-4-8橢圓測厚儀 (M2000 Ellipsometer) 29
第四章 實驗結果與討論 30
• 4-1 超薄氧化層探討 30
• 4-1-1 離子佈值後摻雜薄膜 30
• 4-1-2 薄型氧化層表面鈍化能力分析 31
• 4-2 複合薄膜分析 32
• 4-2-1厚型氮化矽覆蓋於薄型氧化層 32
• 4-2-2薄型氮化矽覆蓋於薄型氧化層 33
• 4-2-3複合薄膜電性 34
• 4-2-4複合薄膜原子鍵結 35
• 4-2-5 氧化銦錫(ITO)薄膜 38
• 4-3薄型複合鈍化結構應用於矽基光偵測器 38
• 4-3-1 薄型氧化層應用於矽基光偵測器 39
• 4-3-2 薄型氮化矽層應用於矽基光偵測器 40
• 4-3-3 薄型複合鈍化層應用於矽基光偵測器 42
• 4-3-4 不同結構薄膜應用於矽基光偵測器 43
• 4-3-5不同厚度氮化矽之複合薄膜結構應用於矽基光偵測器 43
第五章 結論與未來展望 45
• 5-1 結論 45
• 5-2 未來展望 46
• 參考文獻 47
[1] https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
[2] R. M. C. de Almeida and I. J. R. Baumvol, Reaction-diffusion in high-κ dielectrics on Si, Surface Science Reports. 49, 3, 2003.
[3] H. J. R. Dutton, Understanding Optical Communications, IBM, 1998.
[4] 紀國鐘、蘇炎坤主編,光電半導體技術手冊,台灣電子材料與元件協會,新竹市,民國九十一年十月。
[5] E. Robert, " Evacuation dynamics: Empirical results, modeling and applications, " Ph.D. Dissertation, Technischen Universität Wien, 2007.
[6] Bojan Karunagaran, S. J. Chung,Velumani S, E.-K. Suh, "Effect of rapid thermal annealing on the properties of PECVD SiN(x) thin films. Materials Chemistry and Physics, "106 130-133. 2007.
[7] Blakers, A., High-efficiency crystalline silicon solar-cells. Festkorperprobleme-Advances in Solid State Phyics, 30 403-423. 1990.
[8] M. Bivour, "Improving the a-Si:H(p) Rear Emitter Contact of n-Type Silicon Solar Cells, " Silicon PV conference, 2012.
[9] Frank Feldmannn, Maik Simon, Martin Bivour, Christian Reichel, Martin Hermle, Stefan W. Glunz” Efficient carrier-selective p- and n-contacts for Si solar cells” Solar Energy Materials & Solar Cells 131 100–104.2014.
[10] Shin-ichi Muramatsu, Tsuyoshi Uematsu, Hiroyuki Ohtsuka, Yoshiaki Yazawa, Terunori Warabisako, Hiroshi Nagayoshi, Kouichi Kamisako, “Effect of hydrogen radical annealing on SiN passivated solar cells”. Solar Energy Materials and Solar Cells. 65(1 -4): p. 599-606. 2001.
[11] Govind P. Agrawal, "Fiber Optic Communication System "John Wiley, 3rd Edition 2004.
[12] Marco Ernst, Daniel Walter, Andreas Fell, Bianca Lim, and Klaus Weber “Efficiency Potential of P-Type Al2O3/SiNx Passivated PERC Solar Cells with Locally Laser-Doped Rear Contacts” Ieee Journal of Photovoltaics, Vol.6, No.3, May 2016.
[13] Di Yan, Andres Cuevas, James Bullock, Yimao Wan, Christian Samundsett, S. M. Sze, “semiconductor device physics and technology 2nd edition”, WILEY, 2001.
[14] Frank Feldmannn, Martin Bivour, Christian Reichel, Heiko Steinkemper, Martin Hermle, Stefan W Glunz,” Tunnel oxide passivated contacts as an alternativeto partial rear contacts” Solar Energy Materials & Solar Cells, 131, 46–50, 2014.
[15] DIETER K. SCHRODER, "semiconductor-material-and-device-characterization," Third Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.
[16] H. Ferhati, F. Djeffal, K. Kacha, A. Bendjerad, A. Benhaya.” Influence of TCO intermediate thin-layers on the electrical and thermal properties of metal/TCO/p-Si Schottky structure fabricated via RF magnetron sputtering” Physica E: Low-dimensional Systems and Nanostructures, vol. 106, 25-30, 2019.
[17] J. W. Hsu, "Interfacial and Electrical Properties of Atomic Layer Deposited HfO2/InAs MOS Capacitor," Master's Thesis, Electrical Engineering, National Central University, Taiwan, 2012.
[18] L. M. Terman, "An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes," Solid-State Electronics, vol. 5, 285-299, 1962.
[19] E. H. Nicollian and A. Goetzberger: “, "The Si-SiO2 Interface - Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique," Bell Syst. Tech. J, vol. 46, 1055-1133, 1967.
[20] Suhaila Sepeai, M. Y. Sulaiman, Kamaruzzaman Sopian, and Saleem H. Zaidi “Surface passivation studies on n+pp+ bifacial solar cell. ” International Journal of Photoenergy, 2012.
[21] 許正興:半導體元件與物理 Semiconductor Devices and physics。取自https://docsplayer.com/45538920-Microsoft-powerpoint-%E5%8D%8A%E5%B0%8E%E9%AB%94%E5%85%83%E4%BB%B6%E8%88%87%E7%89%A9%E7%90%865.html
[22] E. H. Nicollian, J. R.Brews, MOS physics and technology, Wiley, 1982.
[23] D. A. Neamen, Semiconductor Physics and Devices: Basic principles, 3rd ed McGraw-Hill, New York, 2003.
[24] B. Van Zeghbroeck, http://ecee.colorado.edu/~bart/book/book/toc6.htm . 2011.
[25] A.Koukab, A. Bath, and E. Losson, "An improved high frequency C-V method for interface state analysis on MIS structures,” Solid-State Electronics, vol. 41 p.635-641 1997.
[26] Christoph Schwab, Andreas Wolf, Martin Graf, Nico Wohrle, Saskia K ¨ uhnhold, Johannes Greulich,Gero Kastner, Daniel Biro, and Ralf Preu “Recombination and optical properties of wet chemically polished thermal oxide passivated si surfaces. ” IEEE Journal of Photovoltaics. 3(2): p.613-620. 2013
[27] E. Pincik, H. Kobayashi, R. Hajossy, H. Gleskova, M. Takahashi, M. Jergel, R. Brunner, L. Ortega, M. Kucera, M. Kral, J. Rusnak, “On interface properties of ultra-thin and very-thin oxide/a-Si:H structures prepared by oxygen based plasmas and chemical oxidation. ” Applied Surface Science. 253(16): p. 6697-6715. 2007.
[28] Shigeaki Mizushima, Shigeki Imai, Asuha, Masato Tanaka, Hikaru Kobayashi, “Nitric acid method for fabrication of gate oxides in TFT.” Applied Surface Science. 254(12): p. 3685-3689. 2008
[29] Hikaru Kobayashi Asuha, Osamu Maida, Masao Takahashi, and Hitoo Iwasa, “Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density.” Journal of Applied Physics.94 (11), 7328-7335. 2003.
[30] Mihailetchi, V.D., Y. Komatsu, and L.J. Geerligs, “Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells.” Applied Physics Letters, 2008.
[31] M. Yamaguchi, H. Nagayoshi, Y. Yamamoto, M. Ikeda, T. Uematsu, T. Saitoh, and K. Kamisako.” Passivation Properties of a-Si-N:H/SiO, Double-Layer Structures”, First WCPEC, 5-9, 1994
[32] Ji Youn Lee, Jochen Dicker, Stefan Rein and Stefan W. Glunz,” Investigation of Various Surface Passivation Layers Using Oxide/Nitride Stacks of Silicon Solar Cells”, WorldConferenceon PhotovoltaicEnergy Conversion. 2003.
[33] A.G. Ulyashin, A. Bentzen, S. Diplas, A. Suphellen, A.E. Gunnaes, A. Olsen, B.G. Svensson, E.S. Marstein, A. Holt, D. Grambole, E. Sauar,” Hydrogen Release and Defect Formation During Heat Treatments of SiNx:H/a-Si:H Double Passivation Layer on c-Si Substrate”, IEEE, 2006.
[34] Jae-Won Seo, Hoon Oh, Do-Hyun Kyung, Myung-Ick Hwang, Kyumin Lee, Won-Jae Lee and Eun-Chel Cho,” Investigation of Passivation Properties of Thermal Al2O3 and SiNx Stack Layers Deposited On Solar Grade p-type CZ Si Wafers”, IEEE, 2011.
[35] Ruy S. Bonillaa, Peter R. Wilshaw,” Stable field effect surface passivation of n-type Cz silicon”, Energy Procedia 38, 816 – 822, 2013.
[36] Simone Bernardini, Adrienne L. Blum, and Mariana I. Bertoni,” Evaluation of Passivation Layers via Temperature-Dependent Lifetime Measurements”, IEEE, 2014.
[37] Mathieu Boccard, Xinbo Yang, Klaus Weber, and Zachary C. Holman,” Passivation and carrier selectivity of TiO2 contacts combined with different passivation layers and electrodes for silicon solar cells”, IEEE, 2016
[38] Xuemei Cheng, Erik Stensrud Marstein, Chang Chuan You, Halvard Haug and Marisa Di Sabatino,” Temporal stability of a-Si:H and a-SiNx:H on crystalline silicon wafers”, nergy Procedia 124, 275–281, 2017.
[39] Manickam Matheswaran, Tae Ouk Kwon, Jae Woo Kim, and Il Shik Moon,” Factors Affecting Flux and Water Separation Performance in Air Gap Membrane Distillation ” J. Ind. Eng. Chem., Vol. 13, No. 6, pp. 965-970.May 2007.
電子全文 電子全文(網際網路公開日期:20240701)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔