跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/05 02:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:關以鈞
研究生(外文):Yee-Kwan Kwan
論文名稱:多維度(3D/2D/1D)嵌入式奈米結構熱介面材料開發與高功率電子元件熱管理應用
論文名稱(外文):Multi-dimensional (3D / 2D / 1D) percolation nanostructure-based thermal interface material development and thermal management application of high-power electronic components
指導教授:傅尹坤傅尹坤引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:68
中文關鍵詞:多維度(3D/2D/1D)嵌入式奈米結構熱介面材料聚二甲基矽氧烷(PDMS)熱管理
外文關鍵詞:Multi-dimensionalPercolation nanostructureTIMsPolydimethylsiloxane (PDMS)Thermal management
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要在探討開發新型異質接面奈米結構之熱介面材料(TIMs) ,因高功率電子元件運作時必須轉移到一個散熱器,並最終消散到周圍環境,會產生大量熱能,若電子元件與散熱話接觸面會產生間隙,進而形成一層熱阻抗(Thermal resistance),因此透過開發高熱導率TIMs可將電子元件與散熱器之間間隙填補進而提升熱傳導性能,對於高功率電子元件的散熱能大幅改善並提高電子元件壽命。本研究主要分為兩部份,第一部分係利用球磨方式,將多層石墨烯(Exfoliated Graphite Nanoplatelets,EGN)製備成球磨石墨烯(Ball-Milled Exfoliated Graphite Nanoplatelets,BMEGN),混入奈米銀線(Sliver nanowires,AgNWs) ,將材料嵌入聚二甲基矽氧烷(PDMS),製成熱介面材料,再利用網印技術將再生石墨烯作為高度拉伸和低成本的熱界面材料,探討其TIMs之水平與垂直方向之熱傳導系數,並且實際應用於絕緣閘雙極電晶體(IGBT)與散熱片之間的溫度量測。第二部分則是將市售之少層石墨烯(A Few Layer Graphite,AFLG),同樣混入奈米銀線(AgNWs)填料再利用網印技術印刷至3D結構(纖維/銅片)上,發展新型異質接面奈米結構熱介面材料,並探討其對於所製備熱介面材料熱傳導系數的影響,並進行一系列的實驗分析,並量測TIMs之水平與垂直方向之熱傳導系數,再將TIMs實際應用於電子元件的溫度量測。將熱介面材料夾在其中,利用熱電偶觀察其散熱效果,並且實際應用於核研所現有之15kW電力轉換器與鋁散熱鰭片之間進行溫度散熱量測。
This study explored the development of new heterogeneous nanostructured thermal interface materials (TIMs).High-power electronic components must be transferred to a heat sink when operating, and eventually dissipated into the surrounding environment. If electronic components of the contact surface with the heat sink will create a gap, which will form a thermal resistance. Therefore, by developing high thermal conductivity TIMs, the gap between the electronic component and the heat sink can be filled to improve the heat conduction performance, and the heat dissipation performance of the high power electronic component can be improved. This study is divided into two parts. The first part is the use of ball milling to prepare the multi-graphene (Exfoliated Graphite Nanoplatelets, EGN) into Ball-Milled Exfoliated Graphite Nanoplatelets (BMEGN), which is mixed into the silver nano wire (AgNWs). Fillers are embedded and thermally cured with Polydimethylsiloxane (PDMS). Then, fillers via screen printing technology as a highly stretched and low-cost thermal interface material to explore the thermal conductivity of horizontal and vertical TIMs , and are used in temperature measurement between Gate Bipolar Transistor(IGBT) and heat sink. The second part is to sell the commercially available A Few layer graphite (AFLG), which is also mixed into the nano silver wire (AgNWs) filler and then printed on the 3D structure (fiber/copper sheet) by screen printing technology. A new type of heterogeneous nanostructured thermal interface materials, and its influence on the thermal conductivity of the prepared thermal interface material with a series of experimental analysis, and measure the thermal conductivity of the horizontal and vertical directions of TIMs. Finally, the TIMs apply on the electronic components and temperature measurement.
摘要 I
Abstract II
致謝……………………………………………………………...………V
目錄 VI
圖目錄 VIII
第一章 緒論 1
1-1前言 ..1
1-2研究動機與目的 3
1-3論文架構 5
第二章 文獻回顧………………………………………………………..6
2-1 球磨處理……………………………………………………..6
2-2 異質接面增強熱傳導路徑………………….…………….......8
2-2 奈米材料之熱介面材料製備與應用………..........................10
第三章 研究方法與過程 12
3-1 球磨石墨烯(BMEGN)球磨處理與奈米銀線(AgNWs) 12
3-1-2利用網印技術製備熱介面材料……………………..14
3-2 多維度製備熱介面材料 14
3-2-1 利用網印技術製備多維度熱介面材料 16
3-3 實驗設備 ……………………………………………………18
第四章 主要發現與結果 23
4-1 奈米銀線(1D)與球磨石墨烯(2D)實驗分析製備熱介面材料 ..23
4-1-1 掃描式電子顯微鏡(SEM) 23
4-1-2 熱介面材料之熱傳導係數……………...…..……25
4-1-3 拉曼光譜(Raman spectroscopy) 27
4-1-4 X-ray繞射分析(XRD) 29
4-1-5 熱重分析 (TGA) 31
4-1-6 CPU的散熱測試 32
4-1-7 實際應用核研所現有之15kW電力轉換器 34
4-2 多維結構複合材料製備熱介面材料實驗與分析 37
4-2-1 掃描式電子顯微鏡(SEM) 36
4-2-2 多維結構熱介面材料之熱傳導係數 39
4-2-3 紅外線熱顯像儀測 41
4-2-4 熱重分析 (TGA) 43
4-2-5 實際應用核研所現有之15kW電力轉換器 44
第五章 結論 46
參考文獻.………..……….......................................................................48
[1] Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, H. Li, A. Haque, L. Q. Chen, T. Jackson, Q. Wang, Flexible High-Temperature Dielectric Materials from Polymer Nanocomposites, Nature. 523, (2015), 576-579.
[2] D. Suh, C. M. Moon, D. Kim, S. Baik, Baik, Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits, Adv. Mater. 28, (2016), 7220.
[3] F. Monteverdew, L. Scatteia, Resistance to Thermal Shock and to Oxidation of Metal Diborides–SiC Ceramics for Aerospace Application, J. Am. Chem. Soc .90, (2007), 1130.
[4] B. Tang, G.X. Hu, H.Y. Gao, L.Y. Hai, Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials, Int. J. Heat Mass Transfer. 85 (2015), 420-429.
[5] X. Yang, C. Liang, T. Ma, Y. Guo, J. Kong, J. Gu, et al, A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods, Adv. Compos. Hybrid Mater. (2018),1-24.
[6] Z. Kuang, Y. Chen, Y. Lu, L. Liu, S. Hu, S. Wen, Y. Mao, L. Zhang, Fabrication of Highly Oriented Hexagonal Boron Nitride Nanosheet/Elastomer Nanocomposites with High Thermal Conductivity, Small. 11, (2015), 1655.
[7] I. Kholmanov, J. Kim, E. Ou, R. S. Ruoff, L. Shi, Continuous carbon nanotube–ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials, ACS Nano. 9, (2015), 11699.
[8] X.F. Zhang, H.Y. Sun, C. Yang, K. Zhang, M.M.F. Yuen, S.H. Yang, Highly conductive polymer composites from room-temperature ionic liquid cured epoxy resin: effect of interphase layer on percolation conductance, RSC Adv. 3, (2013), 1916-1921.
[9] J. Jiao, X. Sun, T.J. Pinnavaia, Reinforcement of a rubbery epoxy polymer by mesostructured silica and organosilica with wormhole framework structures, Adv. Funct. Mater. 18, (2008), 1067-1074.
[10] J.W. Gu, J.J. Du, J. Dang, W.C. Geng, S.H. Hu, Q.Y. Zhang, Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites, RSC Adv. 4, (2014) ,22101–22105
[11] J.W. Gu, Q.Y. Zhang, J. Dang, C.J. Yin, S.J. Chen, Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites, J. Appl. Polym. Sci. 124, (2012), 132–137.
[12] V. Datsyuk, S. Trotsenko, S. Reich, Carbon-nanotube-polymer nanofibers with high thermal conductivity. Carbon. 52, (2013), 605-608.
[13] Y.C. Zhang, K. Dai, J.H. Tang, X. Ji, Z.M. Li, Anisotropically conductive polymer composites with a selective distribution of carbon black in an in situ microfibrillar reinforced blend. Mater. Lett. 64, (2010) ,1430-1432.
[14] W. Dai, J.H. Yu, Y. Wang, Y.Z. Song, F.E. Alam, K. Nishimura, C.-T. Lin, N. Jiang, Enhanced thermal conductivity for polyimide composites with a three dimensional silicon carbide nanowire @ graphene sheets filler. J. Mater. Chem A. 3, (2015), 4884-4891.
[15] S. T. Huxtable, D. G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Userey, M. L. Strano, G. Siddons, M. Shim, P. Keblinski, Interfacial heat flow in carbon nanotube suspensions. Nat Mater. 2 ,(2003), 731.
[16] S. Shenogin, L. P. Xue, R. Ozisik, P. Keblinski, D. G. Cahill, Role of thermal boundary resistance on the heat flow in carbon-nanotube composites J, Appl. Phys. Lett. 95, (2004), 8136-44.
[17] S. Y. Pak, H.M. Kim, S.Y. Kim, J. R. Youn, Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers, Carbon. 50 ,(2012) ,4830–8.
[18] L.Fang,C. Wu, R. Qian, L. Xie, K. Yang, P. Jiang, Nano-micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength, RSC Adv. 4, (2014), 21010–7.
[19] M.Tsai , I. Tseng, J. Chiang, J. Li, Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability, Acs Appl Mater Inter. 6 ,(2014) ,8639–45.
[20] X. Cui, P. Ding , N. Zhuang , L.Shi , N. Song, S. Tang , Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect, Acs Appl Mater Inter. 7, ( 2015) ,19068–75.
[21] J.W. Gu, Q.Y. Zhang, Y.S. Tang, J.P. Zhang, J. Kong, J. Dang, H.P. Zhang, X.Q. Wang, Studies on the preparation and effect of the mechanical properties of titanate coupling reagent modified b-SiC whisker filled celluloid nanocomposites, Surf. Coat. Technol .202, (2008), 2891-2896.
[22] X. Huang, S. Wang, M. Zhu, K. Yang, P. Jiang, Y. Bando, D. Golberg, C.Y. Zhi, Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer, Nanotechnology. 26, (2015), 15705.
[23] C.W. Nan, G. Liu, Y. Lin, M. Li, Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85, (2004), 3549-51.
[24] A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M. E. Itkis, R. C. Haddon, Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites, Adv. Mater. 20, (2008), 4740-44.
[25] L. M. Veca, M. J. Meziani, W. Wang, X. Wang, F. Lu, P. Zhang, Y. Lin, R. Fee, J. W. Connell, Y. P. Sun, Carbon Nanosheets for Polymeric Nanocompositeswith High Thermal Conductivity, Adv. Mater. 21, (2009), 2088-2092.
[26] J. Shen, Y. He, J. Wu, C. Gao, K. Keyshar, X. Zhang, Y. Yang, M. Ye, R. Vajtai, J. Lou, P. M. Ajayan, Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components, Nano Lett.15, (2015), 5449-5454.
[27] A. A. Balandin, Thermal Properties of Graphene and Nanostructured Carbon Materials, Nat. Mater. 10, (2011), 569−581.
[28] L. Tian, P. Anilkumar, L. Cao, C. Y. Kong, M. J. Meziani, H. Qian, L. M. Veca, T. J. Thorne, K. N. Tackett, T. Edwards, Graphene Oxides Dispersing and Hosting Graphene Sheets for Unique Nanocomposite Materials, ACS Nano. 5, (2011), 3052−3058.
[29] H. Hu, Z. Zhao, W. Wan, Y. Gogotsi and J. Qiu, Adv. Mater. 25, (2013), 2219–2223.
[30] S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutierrez and F. del Monte, Chem. Soc. Rev. 42,(2013), 794–830.
[31] Z. Wang, X. Shen, M. Akbari Garakani, X. Lin, Y. Wu, X. Liu, X. Sun and J.-K. Kim, ACS Appl. Mater. Interfaces. 7, (2015), 5538– 5549.
[32] Z. Wang, X. Shen, N. M. Han, X. Liu, Y. Wu, W. Ye and J.-K. Kim, Chem. Mater. 28, (2016), 6731–6741.
[33] F. Xiao, S. Naficy, G. Casillas, M. H. Khan, T. Katkus, L. Jiang, H. Liu, H. Li, Z. Huang, Adv. Mater. 27, (2015), 7196.
[34] W. Dai, J. H. Yu, Y. Wang, Y. Z. Song, F. E. Alam, K. Nishimura, C. T. Lin, N. Jiang, J. Mater. Chem A. 3, (2015), 4884.
[35] N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Prog. Polym. Sci. 61, (2016), 1.
[36] H. L. Zhu, Y. Y. Li, Z. Q. Fang, J. J. Xu, F. Y. Cao, J. Y. Wan, C. Preston, B. Yang, L. B. Hu, ACS Nano. 8, (2014), 3606.
[37]Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 21, (2000), 58-64.
[38] Chen, H.Y.; Ginzburg, V.V.; Yang, J.; Yang, Y.F. Liu, W.; Huang, Y.; Du, L.B.: Chen. B. Thermal conductivity of polymer-based composites Fundamentals and applications. Progress in Polymer Science. 59, (2016), 41-85.
[39] De, S.; King. P.J.; Lyons, P.E. Khan, U.; Coleman, J.N. Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano. 4(12), (2014), 7064-72.
[40] Carmen C. Piras, Susana Fernández-Prieto, Wim M. De Borggraeve, Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives, Nanoscale Adv, 1,(2019), 937-947
[41] Chang. T.C, Fuh. Y.K, Lin, Z.Y, Liao. C.A, Ball milled dispersed network of graphene platelets as thermal interface materials for high-efficiency heat dissipation of electronic devices. JM3. 17(2), (2018), 02400.
[42] Gu, J.W.; Li. N.; Tian, L.D.; IX, Z.Y.; Zhang. Q.Y. High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites. RSC Advances. 5, (2015), 36334-36339.
[43] De, S.; King. P.J.; Lyons, P.E. Khan, U.; Coleman, J.N. Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano. 4(12), (2014), 7064-72.
[44] Y.H. Yu , C.C. M. Ma, C.C. Teng , Y.L. Huang , H.W. Tien , S.H. Lee , I. Wang, Enhanced thermal and mechanical properties of epoxy composites filled with silver nanowires and nanoparticles, Journal of the Taiwan Institute of Chemical Engineers. 44, (2013), 654–659
[45]Chun-An Liao, Yee-Kwan Kwan, Tien-Chan Chang, Yiin-Kuen Fuh, Ball-Milled Recycled Lead-Graphite Pencils as Highly Stretchable and Low-Cost Thermal-Interface Materials. Polymer. 10, (2018), 799
[46] J. Chen, X. Huang, Y. Zhu, and P. Jiang, Cellulose Nanofiber Supported 3D Interconnected BN Nanosheets for Epoxy Nanocomposites with Ultrahigh Thermal Management Capability, ADV. Funct. Mater .(2017), 1604754
[47] F. Wang, X. Zeng, Y. Yao, R. Sun, J. Xu , C.P. Wong, Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity, Scientific Reports volume. 6, (2016), 19394
[48] M. Kalbac, V. Vales, J. Vejpravov. The effect of a thin gold layer on graphene: a Raman spectroscopy study. RSC Adv. 4, (2014), 60929.
[49] Shen, X.;Wang, Z.;Wu, Y.; Liu, X.; He, Y.B.; Zheng, Q.; Yang, Q.H.; Kang, F.; Kim, J.K. A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater. Horizons. 5, (2018), 275–284.
[50] Fang, H.; Zhao, Y.; Zhang, Y.; Ren, Y.; Bai, S.L. Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties. ACS Appl. Mater. Interfaces. 9, (2017), 26447–26459
[51] Fang, H.; Zhang, X.; Zhao, Y.; Bai, S.L. Dense graphene foam and hexagonal boron nitride filled PDMS composites with high thermal conductivity and breakdown strength. Compos. Sci. Technol. 152, (2017), 243–253.
電子全文 電子全文(網際網路公開日期:20240701)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊