(3.237.20.246) 您好!臺灣時間:2021/04/15 12:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃昱綸
研究生(外文):Yu-Lun Huang
論文名稱:氮化矽/二氧化矽複合型薄膜應用於矽基金-絕-半結構光偵測器之研究
論文名稱(外文):Si3N4/SiO2 Compound Films Development and Application for Si-based Metal-Insulator-Semiconductor Photodetectors
指導教授:張正陽張正陽引用關係
指導教授(外文):Jenq-Yang Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:照明與顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:69
中文關鍵詞:複合型薄膜鈍化氮化矽二氧化矽矽基光偵測器金屬-絕緣體-半導體
外文關鍵詞:Compound filmPassivationSilicon nitrideSilicon dioxideSi-based photodetectorMIS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  在光電元件的發展上,諸如太陽能電池或光通訊系統等,改善薄膜品質並降低元件暗電流一直都是研發過程中的必經之路,而其中透過半導體的表面鈍化能有效達到降低暗電流的目的,因此沉積良好的介電材料作為鈍化層成了光電元件製程中常見的一環。然而隨著技術的進步與商用的需求,對於元件暗電流的改善標準也越來越高,為了能達到更佳的鈍化效果,有研究團隊提出了沉積雙層的介電材料,形成複合型的鈍化薄膜,以雙材料雙效果的方式達到比單一鈍化層更好的表現。
  材料的選擇與薄膜品質為複合型薄膜的關鍵,故本研究先以挑選數種常見的鈍化材料作探討,並得到以二氧化矽為內層、氮化矽為外層時,複合型薄膜的鈍化效果最好,量測得載子生命週期(Lifetime)為584.2 μs、隱開路電壓(iVOC)為623.2 mV。為了進一步改善複合型薄膜品質,我們使用濕式化學氧化法成長緻密的二氧化矽薄膜,並堆疊氮化矽後進行熱退火處理,結果得到以退火溫度為500℃時鈍化效果最佳,量測得Lifetime為1329.7 μs、iVOC為646.8 mV。
  為了將複合型薄膜應用到光偵測器元件上,我們嘗試將複合型薄膜薄化,以提升載子傳輸能力,由實驗結果得到當二氧化矽為1.4 nm、氮化矽約為5 nm時為最好,但由於以PECVD方式成長的氮化矽其沉積時間較短,我們也試著以成長較厚的膜再進行乾式蝕刻的方式製備相同厚度的氮化矽層,然而其結果並沒有比前者優秀。
  最後我們將前面所得的氮化矽/二氧化矽複合型薄膜,鍍上透明導電薄膜與金屬電極,製作成矽基金屬-絕緣體-半導體(MIS)光偵測器,可以發現暗電流密度從沒有複合型薄膜(相當於MSM結構)時的1.37×10-3 A/cm2@-3 V下降至6.96×10-5 A/cm2@-3 V,同時光電流響應仍有0.461 A/W@-3 V的表現。我們也探討了在相同厚度下單層或雙層同材料的絕緣層薄膜應用於元件上的情形,而由實驗結果可得其光、暗電流表現均不如應用氮化矽/二氧化矽複合型薄膜者。
  In order to improve the performance of optoelectronic devices, reducing the dark current has become one of the important targets for the development of them, and a good passivation layer could effectively function. However, the standard of device dark current continuously increases according to the commercial demand. For the sake of improving the effect of passivation layer, some research groups have deposited double layers of dielectric material as compound films and tried to gain better performance than single layer films.
  First of all, we grew some thin films which materials are commonly used as passivation layers. Then we discussed the passivation effect of those films and learned that Si3N4/SiO2 compound films have the best performance. The measured minority carrier lifetime is 584.2 μs and the implied open circuit voltage (iVOC) is 623.2 mV. Next, to enhance the quality of compound films, we grew the SiO2 layer by nitric acid oxidation method instead of PECVD. After the Si3N4 layers has deposited, we annealed the compound films, the maximum of measured lifetime is 1329.7 μs and the iVOC is 646.8 mV at 500℃.
  Further, we tried to grow thinner compound films so as to apply them on the Si-based photodetectors. According to the experiments of devices, the compound film with 1.4 nm SiO2 and 5 nm Si3N4 has the best performance. However, due to the short deposited time of Si3N4 by PECVD, we also grew thick Si3N4 film and reduce its thickness by dry etching. Although the passivation effect is better, yet the performance of device is not.
  Finally, the compound films were applied on Si-based MIS photodetector. Compared with the devices without compound film (equivalent to MSM structure), the dark current density decreases from 1.37×10-3 A/cm2@-3 V to 6.96×10-5 A/cm2@-3 V, and the responsivity is 4.61 A/W@-3 V. We also discussed the single and double layer insulator with the same materials which are applied on devices as well. The results show that the performance of Si3N4/SiO2 ones are still the best as expected.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 研究目的與論文架構 4
第二章 基本原理與文獻回顧 5
2-1 鈍化基本原理與複合型薄膜 5
2-1-1 載子復合與鈍化機制 5
2-1-2 氧化層缺陷與電荷 7
2-1-3 複合型薄膜之文獻回顧 10
2-2 金屬-絕緣體-半導體光偵測器 12
2-2-1 蕭特基能障與MIS結構 12
2-2-2 MIS結構元件之文獻回顧 14
第三章 實驗步驟、設備與分析儀器 17
3-1 實驗步驟 17
3-1-1 複合型薄膜製備 17
3-1-2 矽基光偵測器元件製備 19
3-2 製程設備介紹 22
3-2-1 電漿輔助化學氣相沉積系統 (PECVD) 22
3-2-2 快速退火爐 (RTA) 22
3-2-3 離子濺鍍機 (Sputter) 23
3-2-4 光罩對準曝光機 (Mask Aligner) 24
3-2-5 反應式離子蝕刻機 (RIE) 24
3-2-6 高真空電子束暨熱阻式蒸鍍系統 (E-gun/Thermal) 25
3-3 分析儀器介紹 26
3-3-1 光電導生命週期量測儀 (Photo-conductance Lifetime Tester) 26
3-3-2 微觀富氏轉換紅外線儀 (Micro-FTIR) 26
3-3-3 X光光電子能譜儀 (XPS) 27
3-3-4 掃描式電子顯微鏡 (SEM) 28
3-3-5 電容-電壓特性曲線量測 (C-V Characteristics Curve) 28
3-3-6 電流-電壓特性曲線量測 (I-V Characteristics Curve) 29
第四章 實驗結果與討論 30
4-1 複合型薄膜探討 30
4-1-1 單層薄膜與複合型薄膜 30
4-1-2 不同結構之複合型薄膜 32
4-1-3 氮化矽/二氧化矽複合型薄膜分析 36
4-2 複合型薄膜應用於金-絕-半光偵測器 40
4-2-1 MSM與MIS結構之光偵測器 40
4-2-2 複合型薄膜之MIS光偵測器 41
4-2-3 不同方式製備複合型薄膜之MIS光偵測器 43
4-2-4 單層、雙層同材料與複合型薄膜之MIS光偵測器 45
第五章 結論與未來展望 49
5-1 結論 49
5-2 未來展望 50
參考文獻 51
[1] 曲建仲,「微機電系統的發展與應用」,科學月刊,536期,580頁,2014年8月。
[2] Y. Ishikawa and S. Saito, “Ge-on-Si photonic devices for photonic-electronic integration on a Si platform’’, IEICE Electronics Express, Vol. 11, No. 24, pp. 5-6, December 2014.
[3] What are the units of fibre optic communication system. September 11, 2013, retrieved from http://www.expertsmind.com/questions/what-are-the-units-of-fibre-optic-communication-system-301103466.aspx.
[4] M. A. Green, “Forty Years of Photovoltaic Research at UNSW”, Journal and Proceedings-Royal Society of New South Wales, Vol. 148, No. 455, pp. 2-14, January 2015.
[5] K. S. Chan: PERC solar cells. Mar 2019, retrieved from https://medium.com/@kengsiewchan/perc-solar-cells-3eb275804ded.
[6] B. Karunagaran, S. J. Chung, S. Velumani, and E.-K. Suh, “Effect of rapid thermal annealing on the properties of PECVD SiNx thin films”, Materials Chemistry and Physics, Vol. 106, pp. 130-133, 2007.
[7] A.G. Ulyashin, A. Bentzen, S. Diplas, A. Suphellen, A. E. Gunnaes, A. Olsen, B. G. Svensson, E. S. Marstein, A. Holt, D. Grambole, and E. Sauar, “Hydrogen Release and Defect Formation During Heat Treatments of SiNx:H/a-Si:H Double Passivation Layer on c-Si Substrate”, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, pp. 1354-1357, Waikoloa, HI, USA, May 2006.
[8] A. Wolf, S. Mack, C. Brosinsky, M. Hofmann, P. Saint-Cast, and D. Biro, “Impact of Thin Intermediate Thermal Oxide Films on the Properties of PECVD Passivation Layer Systems”, 2011 37th IEEE Photovoltaic Specialists Conference, pp. 3568-3572, Seattle, WA, USA, June 2011.
[9] B. Van Zeghbroeck: Carrier recombination and generation. August 2007, retrieved from http://ecee.colorado.edu/~bart/book/book/chapter2/ch2_8.htm#2_8_1.
[10] P. Stradins, S. Essig, W. Nemeth, B. G. Lee, D. Young, A. Norman, Y Liu, J.-W. Luo, E. Warren, A. Dameron, V. LaSalvia, M. Page, A. Rohatgi, A. Upadhyaya, B. Rounsaville, Y.-W. Ok, S. Glunz, J. Benick, F. Feldmann, and M. Hermle, “Passivated Tunneling Contacts to N-Type Wafer Silicon and Their Implementation into High Performance Solar Cells”, 6th World Conference on Photovoltaic Energy Conversion, Kyoto, Japan, November 2014.
[11] Robert Entner, “Modeling and Simulation of Negative Bias Temperature Instability”, Technische Universität Wien, Ph.D. dissertation, April 2007.
[12] T. C. Thi, K. Koyama, K. Ohdaira, and H. Matsumura, “Effect of hydrogen on passivation quality of SiNx/Si-rich SiNx stacked layers deposited by catalytic chemical vapor deposition on c-Si wafers”, Thin Solid Films, Vol. 575, pp. 60-63, January 2015.
[13] S. Helland, “Electrical Characterization of Amorphous Silicon Nitride Passivation Layers for Crystalline Silicon Solar Cells”, Norwegian University of Science and Technology, Master’s thesis, June 2011.
[14] S.Imai, S. Mizushima, Asuha, W.-B. Kim, and H. Kobayashi, “Properties of thick SiO2/Si structure formed at 120°C by use of two-step nitric acid oxidation method”, Applied Surface Science, Vol. 254, Issue 24, pp. 8054-8058, October 2008.
[15] T. Prodromakis, P. Georgiou, K. Michelakis, and C. Toumazou, “Effect of Mobile Ionic-Charge on CMOS based Ion-Sensitive Field-Effect Transistors (ISFETs)”, 2009 IEEE International Symposium on Circuits and Systems, pp. 2165-2168, Taipei, Taiwan, May 2009.
[16] M. S. Bazilchuk, “Improved Induced Diode Photodetectors by Increased Fixed Charge in PECVD Amorphous Silicon Nitride”, Norwegian University of Science and Technology, Master’s thesis, June 2014.
[17] 許哲瑋,「氧化鉿/砷化銦金氧半結構之製備及其介面與電性研究」,國立中央大學,碩士論文,2012年。
[18] J. Schmidt, M. Kerr, and A. Cuevas, “Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks”,  Semiconductor Science and Technology, Vol. 16, No. 3, pp. 164-170, February 2001.
[19] J. Seiffe, L. Gautero, M. Hofmann, J. Rentsch, R. Preu, S. Weber, and R. A. Eichel, “Surface passivation of crystalline silicon by plasma-enhanced chemical vapor deposition double layers of silicon-rich silicon oxynitride and silicon nitride”, Journal of Applied Physics, Vol. 109, February 2011.
[20] S. Bernardini, A. L. Blum, and M. I. Bertoni, “Evaluation of Passivation Layers via Temperature-Dependent Lifetime”, 2014 IEEE 40th Photovoltaic Specialist Conference, pp. 1206-1210, Denver, CO, USA, June 2014.
[21] F. Haase, T. Neubert, R. Horbelt, B. Terheiden, K. Bothe, and R. Brendel, “Local aluminum–siliconcontactsbylayerselectivelaserablation”, Solar Energy Materials and Solar Cells, Vol. 95, Issue 9 pp. 2698-2700, September 2011.
[22] B. Veith, T. Dullweber, M. Siebert, C. Kranz, F. Werner, N.-P. Harder, J. Schmidt, B. F. P. Roos, T. Dippell, and R. Brendal, “Comparison of ICP-AlOx and ALD-Al2O3 layers for the rear surface passivation of c-Si Solar cells”, Energy Procedia, Vol. 27, pp.379-384, April 2012.
[23] J. A. Töfflinger, A. Laades, C. Leedertz, L. M. Montañez, L. Korte, U. Stürzebecher, H.-P. Sperlich, and B. Rech, “PECVD-AlOx/SiNx passivation stacks on silicon: Effective charge dynamics and interface defect state spectroscopy”, Energy Procedia, Vol. 55, pp. 845-854, 2014.
[24] X. Cheng, E. S. Marstein, H. Haug, and M. B. Sabatino, “Double layers of ultrathin a-Si:H and SiNx for surface passivation of n-type crystalline Si wafers”, Energy Procedia, Vol. 92, pp.347-352, August 2016.
[25] X. Cheng, E. S. Marstein, C. C. You, H. Haug, and M. B. Sabatino, “Temporal stability of a-Si:H and a-SiNx:H on crystalline silicon wafers”, Energy Procedia, Vol. 124, pp. 275-281, September 2017.
[26] University of Warwick: Schottky Contact. January 27, 2011, retrieved from https://warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpagswarwick/ex5/devices/hetrojunction/schottky/.
[27] M.-H. Liao and P.-K. Chen, “Experimental demonstration on the ultra-low source/drain resistance by metalinsulator-semiconductor contact structure in In0.53Ga0.47As field-effect transistors”, AIP Advances, Vol. 3, September 2013.
[28] S.-L. Hsu, “Hafnium oxide films for application as gate dielectrics”, The University of Arizona, Ph.D. dissertation, January 2005.
[29] J. D. Hwang, G. H. Yang, Y. H. Chen, W. T. Chang, and J. H. Lin, “Optical characteristics of an Al/nano-SiO2/n-type Si MOS photodetector by using spin-coating deposited oxide”, Micro & Nano Letters, Vol. 7, Issue 3, pp. 252-255, March 2012.
[30] A. Tataroǧlu, “Comparative study of the electrical properties of Au/n-Si (MS) and Au/Si3N4/n-Si (MIS) Schottky diodes”, Chinese Physics B, Vol. 22, No. 6, 2013.
[31] E. Pinčík, H. Kobayashi, H. Gleskova, M. Takahashi, M. Jergel, R. Brunner, L. Ortega, M. J. Kucera, and J. Rusnák, “On interface properties of ultra-thin and very-thin oxide/a-Si : H structures prepared by oxygen based plasmas and chemical oxidation”, Applied Surface Science, Vol. 253, Issue 16, pp. 6697-6715, June 2007.
[32] W.-B. Kim, T. Matsumoto, and H. Kobayashi, “Ultrathin SiO2 layer with a low leakage current density formed with ∼ 100% nitric acid vapor”, Nanotechnoledge, Vol. 21, No. 11, February 2010.
[33] LNF Wiki: Plasma enhanced chemical vapor deposition. March 10, 2016, retrieved from http://lnf-wiki.eecs.umich.edu/wiki/Plasma_enhanced_chemical_vapor_deposition.
[34] R. Hezel, K. Blumenstock, and R. Schörner, “Interface States and Fixed Charges in MNOS Structures with APCVD and Plasma Silicon Nitride”, Journal of The Electrochemical Society, Vol. 131, Issue 7, pp.1679-1683, January 1984.
[35] N. Tomozeiu, J. J. van Hapert, E. E. van Faassen, W. Arnoldbik, A. M. Vredenberg, and F. H. P. M. Habraken, “Structural Properties of a-SiOx Layers Deposited by Reactive Sputtering Technique”, Journal of Optoelectronics and Advanced Materials, Vol. 4, No. 3, pp. 513-521, September 2002.
[36] F. Feldmann, M. Bivour, C. Reichel, M. Hermle, and S. W. Glunz, “Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics”, Solar Energy Materials and Solar Cells, Vol. 120, Part A, pp. 270-274, January 2014.
電子全文 電子全文(網際網路公開日期:20240701)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔