跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 22:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊珮佳
研究生(外文):Yang,Pei-Chia
論文名稱:HEPES-Au NPs 輔助成長金奈米結構於汞離子檢測應用
論文名稱(外文):HEPES-Au NPs-assisted growth of Au nanostructures for sensing Hg(II) ions
指導教授:林泱蔚
指導教授(外文):Lin,Yang-Wei
口試委員:林泱蔚廖美儀黃志嘉
口試委員(外文):Lin,Yang-WeiLIAO,MEI-YIHUANG,CHIH-CHIA
口試日期:2019-07-04
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:76
中文關鍵詞:表面增強拉曼散射光譜表面電漿共振傳感器金奈米粒子汞離子
外文關鍵詞:Surface Enhanced Raman ScatteringLocalized Surface Plasmon ResonanceSensorGold NanoparticlesMercury ion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用Hg(II)對金奈米粒子(Gold Nanoparticles,Au NPs)生長的阻礙作用,開發了Hg(II)的無標記比色奈米傳感器,並結合表面增強拉曼散射(Surface-Enhanced Raman Scattering,SERS)做更深一步的測定。探討Au NPs對於不同濃度Hg(II)在SERS訊號中對於4-巰基苯甲酸(4-Mercaptobenzoic acid,4-MBA)探針分子之拉曼訊號強度的影響。在最佳化條件下,使用紫外-可見分光光譜法(Ultraviolet-visible spectroscopy,UV-Vis)能夠檢測到10 nM〜100 μM的Hg(II)濃度範圍,偵測極限為7 nM,顯示出對Hg(II)測定的良好選擇性和靈敏度。
SERS於粗糙金屬表面電場增強出現的局部表面等離子體共振(Localized Surface Plasmon Resonance,LSPR)。利用SERS訊號增強效果取決於奈米顆粒的尺寸、形狀與聚集程度,如果金屬奈米粒子具有更大的尺寸,則吸收峰將朝向更長波長區域移動,這可能在Laser激發下於1590 cm-1產生更強的LSPR。在優化條件下,本研究能夠檢測到Hg(II)之線性範圍為0.1 nM〜1.0 μM,偵測極限為0.06 nM。本研究結果顯示使用所開發的方法對不同Hg(II)濃度進行定量分析的可能性。具SERS活性的Au NPs用4-MBA修飾後得知,不論是靈敏度或偵測極限與UV-Vis吸收光譜相比,皆有較佳的效果,而且偵測極限值相差近100倍。
另外在SERS檢測上使用疏水端試紙,與無疏水端的試紙相比, Au NPs會集中在試紙的中心,這不但可以控制Au NPs的分布範圍使其分布密度均勻,也會使訊號峰更穩定,也使光譜積分面積值範圍擴大,獲得更佳的靈敏度。最後於真實水樣的應用,使用UV-Vis吸收光譜與SERS所測結果分別為64〜126%和75〜117%,皆有不錯的回收率,未來希望對此材料進行更進一步研究,提高對Hg(II)的偵測靈敏度,且將其延伸應用於生物成像、藥物載體以及抗菌實驗等面向,利用其優勢發展更全面性的應用。
In this study, Hg(II) label-free colorimetric nanosensor was researched and developed by using Hg(II) versus the growth of gold nanoparticles (Au NPs) obstruction and integrated Surface-Enhanced Raman Scattering (SERS) for further determination.
The study of the effect of Au NPs on the Raman signal strength of 4-Mercaptobenzoic acid (4-MBA) probe molecules in SERS signals for different concentrations of Hg(II). Under optimal conditions, Ultraviolet-visible spectroscopy (UV-Vis) can be used to detect the Hg(II) concentration range of 10 nM~100 μM with a detection limit of 7 nM, showing good selectivity and sensitivity for Hg(II) test.
The electric field of SERS on the rough metal surface enhances the Localized Surface Plasmon Resonance (LSPR) that occurs. The effect of enhancing the SERS signal depends on the size, shape and aggregation of the nanoparticles. If the metal nanoparticles have a larger size, the absorption peak will move toward the longer wavelength region, which may produce a stronger LSPR at 1590 cm-1 under Laser excitation. Under optimized conditions, this study was provided with detecting a linear range of Hg(II) from 0.1 nM to 1.0 μM with a detection limit of 0.06 nM. The results of this study show the possibility of quantitative analysis of different Hg(II) concentrations using the developed method.
With SERS activity of the Au NPs were modified by 4-MBA, no matter the sensitivity or on the detection limitation was with better effect while in comparison with the UV-Vis absorption spectrum, and the detection limitation of SERS was nearly 100 times more than that of UV-Vis.
In addition, the SERS test was conducted by using hydrophobic test paper in comparison with the test paper without the hydrophobic field, the Au NPs were concentrated in the center of the test paper. This not only controls the distribution range of the Au NPs, to make the distribution density uniformly but also makes the signal peak more stable, to expand the range of spectral integral area values for better sensitivity. Finally, in the application of real water samples, the measurements of UV-Vis and SERS are 64~126% and 75~117%, respectively, and both are with good recovery percentage. In the future, we hope to further study this material, improve the detection sensitivity of Hg(II), and extend it to the aspects of bio-imaging, drug carriers and antibacterial experiments, and use its advantages to develop more comprehensive applications.
目錄
摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 IX
一、 序論 1
1-1 前言 1
1-2 拉曼光譜 3
1-3 表面增強拉曼散射 5
1-4 表面增強拉曼散射的應用 7
1-5 邏輯閘介紹 9
1-6 研究動機與目的 11
二、 實驗藥品與儀器 14
2-1 實驗藥品 14
2-2 實驗儀器 16
三、 實驗方法 17
3-1 金奈米粒子合成 17
3-2 汞離子感測器 19
3-3 邏輯閘分析 20
3-4 循環伏安法 20
3-4-1 邏輯閘分析電極預氧化處理 20
3-4-2 合成基材粗糙表面積之測定(Roughness Factor) 21
3-5 真實樣品之測定 22
四、 結果與討論 23
4-1 金奈米粒子偵測汞離子機制 23
4-2 最佳化參數探討 28
4-3 不同濃度汞離子對UV-Vis的探討 39
4-3-1 靈敏度 39
4-3-2 選擇性 41
4-3-3 容忍度 43
4-4 邏輯閘統整及分類 44
4-5 不同拉曼基材探討 48
4-6 探討合成基材的EF值 53
4-7 不同濃度汞離子對SERS的探討 54
4-7-1 靈敏度 54
4-7-2 選擇性 56
4-7-3 容忍度 57
4-8 拉曼檢測之試紙探討 58
4-9 真實水樣之測定 63
五、 討論與未來展望 68
六、 參考文獻 70
參考文獻
1. Wang, M.; Feng, W.; Shi, J.; Zhang, F.; Wang, B.; Zhu, M.; Li, B.; Zhao, Y.; Chai, Z. J. T., Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC–ICP-MS. Talanta 2007, 71 (5), 2034-2039.
2. Leermakers, M.; Baeyens, W.; Quevauviller, P.; Horvat, M. J. T. T. i. A. C., Mercury in environmental samples: speciation, artifacts and validation. TrAC Trends in Analytical Chemistry 2005, 24 (5), 383-393.
3. Bhattacharjee, Y.; Chatterjee, D.; Chakraborty, A., Mercaptobenzoheterocyclic compounds functionalized silver nanoparticle, an ultrasensitive colorimetric probe for Hg (II) detection in water with picomolar precision: A correlation between sensitivity and binding affinity. Sensors and Actuators B: Chemical 2018, 255, 210-216.
4. Darbha, G. K.; Singh, A. K.; Rai, U. S.; Yu, E.; Yu, H.; Chandra Ray, P. J. J. o. t. A. C. S., Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. Journal of the American Chemical Society 2008, 130 (25), 8038-8043.
5. Leopold, K.; Foulkes, M.; Worsfold, P. J. J. A. c., Gold-coated silica as a preconcentration phase for the determination of total dissolved mercury in natural waters using atomic fluorescence spectrometry. Analytical chemistry 2009, 81 (9), 3421-3428.
6. Chen, J.; Chen, H.; Jin, X.; Chen, H. J. T., Determination of ultra-trace amount methyl-, phenyl-and inorganic mercury in environmental and biological samples by liquid chromatography with inductively coupled plasma mass spectrometry after cloud point extraction preconcentration. Talanta 2009, 77 (4), 1381-1387.
7. Li, J.-M.; Ma, W.-F.; You, L.-J.; Guo, J.; Hu, J.; Wang, C.-C. J. L., Highly sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates. Highly sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates 2013, 29 (20), 6147-6155.
8. Zheng, J.; He, L. J. C. R. i. F. S.; Safety, F., Surface‐enhanced Raman spectroscopy for the chemical analysis of food. Comprehensive Reviews in Food Science and Food Safety 2014, 13 (3), 317-328.
9. Zhang, L.; Li, T.; Li, B.; Li, J.; Wang, E. J. C. c., Carbon nanotube–DNA hybrid fluorescent sensor for sensitive and selective detection of mercury (II) ion. Chemical communications 2010, 46 (9), 1476-1478.
10. Liu, C.-W.; Huang, C.-C.; Chang, H.-T. J. L., Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury (II). Langmuir 2008, 24 (15), 8346-8350.
11. Luo, Y.; Xu, L.; Liang, A.; Deng, A.; Jiang, Z. J. R. A., A highly sensitive resonance Rayleigh scattering assay for detection of Hg (II) using immunonanogold as probe. RSC Advances 2014, 4 (37), 19234-19237.
12. Wen, G.; Liang, A.; Jiang, Z. J. P., Functional nucleic acid nanoparticle-based resonance scattering spectral probe. Plasmonics 2013, 8 (2), 899-911.
13. Driskell, J. D.; Lipert, R. J.; Porter, M. D. J. T. j. o. p. c. B., Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering. The journal of physical chemistry B 2006, 110 (35), 17444-17451.
14. Chen, J.; McLellan, J. M.; Siekkinen, A.; Xiong, Y.; Li, Z.-Y.; Xia, Y. J. J. o. t. A. C. S., Facile synthesis of gold− silver nanocages with controllable pores on the surface. Journal of the American Chemical Society 2006, 128 (46), 14776-14777.
15. Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzan, L. M.; de Abajo, F. J. G. J. C. S. R., Modelling the optical response of gold nanoparticles. Chemical Society Reviews 2008, 37 (9), 1792-1805.
16. Amirjani, A.; Haghshenas, D. F., Facile and on− line colorimetric detection of Hg2+ based on localized surface plasmon resonance (LSPR) of Ag nanotriangles. Talanta 2019, 192, 418-423.
17. Jiang, L.; Sun, Y.; Huo, F.; Zhang, H.; Qin, L.; Li, S.; Chen, X. J. N., Free-standing one-dimensional plasmonic nanostructures. Nanoscale 2012, 4 (1), 66-75.
18. Guselnikova, O.; Svorcik, V.; Lyutakov, O.; Chehimi, M. M.; Postnikov, P. S., Preparation of Selective and Reproducible SERS Sensors of Hg2+ Ions via a Sunlight-Induced Thiol–Yne Reaction on Gold Gratings. Sensors 2019, 19 (9), 2110.
19. Wang, G.; Lim, C.; Chen, L.; Chon, H.; Choo, J.; Hong, J. J. A.; chemistry, b., Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions. Analytical and bioanalytical chemistry 2009, 394 (7), 1827-1832.
20. Lee, C.-I.; Choo, J.-B. J. B. o. t. K. C. S., Selective trace analysis of mercury (II) ions in aqueous media using sers-based aptamer sensor. Bulletin of the Korean Chemical Society 2011, 32 (6), 2003-2007.
21. Wen, G.; Li, J.; Liang, A.; Jiang, Z.; He, X. J. A. C. S., Resonance scattering spectral detection of trace Hg 2+ using herring sperm DNA modified nanogold as catalyst of the Fehling reaction. Analytical chemistry 2010, 68 (1), 83-88.
22. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. J. C. P. L., Raman spectra of pyridine adsorbed at a silver electrode. Chemical physics letters 1974, 26 (2), 163-166.
23. Bukowska, J.; Piotrowski, P., Surface-enhanced Raman scattering (SERS) in bioscience: a review of application. Optical Spectroscopy and Computational Methods in Biology and Medicine 2014, 29-59.
24. Wang, Y.; Yan, B.; Chen, L. J. C. r., SERS tags: novel optical nanoprobes for bioanalysis. Chemical reviews 2012, 113 (3), 1391-1428.
25. Jarvis, R. M.; Goodacre, R. J. C. S. R., Characterisation and identification of bacteria using SERS. Chemical Society Reviews 2008, 37 (5), 931-936.
26. Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. J. A. c., Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Analytical chemistry 2005, 77 (10), 3261-3266.
27. McNay, G.; Eustace, D.; Smith, W. E.; Faulds, K.; Graham, D. J. A. s., Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Applied spectroscopy 2011, 65 (8), 825-837.
28. Petry, R.; Schmitt, M.; Popp, J. J. C., Raman spectroscopy—a prospective tool in the life sciences. ChemPhysChem 2003, 4 (1), 14-30.
29. Kruszewski, S. J. C. R.; Experimental, T. J. o.; Crystallography, I., Surface enhanced Raman scattering phenomenon. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography 2006, 41 (6), 562-569.
30. Abruña, H. D., Electrochemical interfaces: modern techniques for in-situ interface characterization. Applied Physics Letters 1991, (544.6 ABR).
31. Gupta, N.; Ghosh, R. R.; Dhawan, A. In Nanoholes arrays as effective SERS substrates with multiple wavelength SERS response and large electromagnetic SERS enhancement factors, Plasmonics in Biology and Medicine XVI, International Society for Optics and Photonics: 2019; p 1089418.
32. Zhang, D.; Liang, P.; Yu, Z.; Huang, J.; Ni, D.; Shu, H.; Dong, Q.-m., The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects. Sensors and Actuators B: Chemical 2018, 256, 721-728.
33. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. J. C. r., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical reviews 2011, 111 (6), 3669-3712.
34. Aroca, R. F.; Goulet, P. J.; dos Santos, D. S.; Alvarez-Puebla, R. A.; Oliveira, O. N. J. A. c., Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering. Analytical chemistry 2005, 77 (2), 378-382.
35. Zhang, W.; Cai, Y.; Qian, R.; Zhao, B.; Zhu, P. J. N., Synthesis of ball-like Ag nanorod aggregates for surface-enhanced Raman scattering and catalytic reduction. Nanomaterials 2016, 6 (6), 99.
36. Li, C.; Ouyang, H.; Tang, X.; Wen, G.; Liang, A.; Jiang, Z. J. B.; Bioelectronics, A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe. Biosensors and Bioelectronics 2017, 87, 888-893.
37. Wen, G.; Liang, X.; Liu, Q.; Liang, A.; Jiang, Z. J. B.; Bioelectronics, A novel nanocatalytic SERS detection of trace human chorionic gonadotropin using labeled-free Vitoria blue 4R as molecular probe. Biosensors and Bioelectronics 2016, 85, 450-456.
38. Szlag, V. M.; Rodriguez, R. S.; He, J.; Hudson-Smith, N.; Kang, H.; Le, N.; Reineke, T. M.; Haynes, C. L., Molecular affinity agents for intrinsic surface-enhanced Raman scattering (SERS) sensors. ACS applied materials & interfaces 2018, 10 (38), 31825-31844.
39. Li, J.-M.; Ma, W.-F.; Wei, C.; Guo, J.; Hu, J.; Wang, C.-C. J. J. o. M. C., Poly (styrene-co-acrylic acid) core and silver nanoparticle/silica shell composite microspheres as high performance surface-enhanced Raman spectroscopy (SERS) substrate and molecular barcode label. Journal of Materials Chemistry 2011, 21 (16), 5992-5998.
40. Senapati, T.; Senapati, D.; Singh, A. K.; Fan, Z.; Kanchanapally, R.; Ray, P. C. J. C. C., Highly selective SERS probe for Hg (II) detection using tryptophan-protected popcorn shaped gold nanoparticles. Chemical Communications 2011, 47 (37), 10326-10328.
41. Han, D.; Lim, S. Y.; Kim, B. J.; Piao, L.; Chung, T. D. J. C. C., Mercury (II) detection by SERS based on a single gold microshell. Chemical Communications 2010, 46 (30), 5587-5589.
42. Zeng, Y.; Wang, L.; Zeng, L.; Shen, A.; Hu, J. J. T., A label-free SERS probe for highly sensitive detection of Hg2+ based on functionalized Au@ Ag nanoparticles. Talanta 2017, 162, 374-379.
43. Shukoor, M. I.; Altman, M. O.; Han, D.; Bayrac, A. T.; Ocsoy, I.; Zhu, Z.; Tan, W. J. A. a. m.; interfaces, Aptamer-nanoparticle assembly for logic-based detection. ACS applied materials & interfaces 2012, 4 (6), 3007-3011.
44. Chen, J.; Fang, Z.; Lie, P.; Zeng, L. J. A. c., Computational lateral flow biosensor for proteins and small molecules: a new class of strip logic gates. Analytical chemistry 2012, 84 (15), 6321-6325.
45. Ogawa, A.; Maeda, M. J. C. C., Easy design of logic gates based on aptazymes and noncrosslinking gold nanoparticle aggregation. Chemical Communications 2009, (31), 4666-4668.
46. Jv, Y.; Li, B.; Cao, R. J. C. c., Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chemical communications, 2010, 46 (42), 8017-8019.
47. Elbaz, J.; Shlyahovsky, B.; Li, D.; Willner, I. J. C., Parallel analysis of two analytes in solutions or on surfaces by using a bifunctional aptamer: applications for biosensing and logic gate operations. ChemBioChem 2008, 9 (2), 232-239.
48. Carell, T. J. N., Molecular computing: DNA as a logic operator. Nature 2011, 469 (7328), 45.
49. Wang, J.; Katz, E. J. A.; chemistry, b., Digital biosensors with built-in logic for biomedical applications—biosensors based on a biocomputing concept. Analytical and bioanalytical chemistry 2010, 398 (4), 1591-1603.
50. Suksai, C.; Tuntulani, T. J. C. s. r., Chromogenic anion sensors. Chemical society reviews 2003, 32 (4), 192-202.
51. Lodeiro, C.; Capelo, J. L.; Mejuto, J. C.; Oliveira, E.; Santos, H. M.; Pedras, B.; Nunez, C. J. C. S. R., Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio-inspired systems as chemosensors. Chemical Society Reviews 2010, 39 (8), 2948-2976.
52. Willets, K. A.; Van Duyne, R. P. J. A. R. P. C., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
53. Xia, Y.; Halas, N. J. J. M. b., Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS bulletin 2005, 30 (5), 338-348.
54. Liu, Z.; Cheng, L.; Zhang, L.; Jing, C.; Shi, X.; Yang, Z.; Long, Y.; Fang, J. J. N., Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au–Ag alloy nanourchins. Nanoscale 2014, 6 (5), 2567-2572.
55. Alvarez-Puebla, R. A.; dos Santos Jr, D. S.; Aroca, R. F. J. A., SERS detection of environmental pollutants in humic acid–gold nanoparticle composite materials. Analyst 2007, 132 (12), 1210-1214.
56. Kneipp, J.; Kneipp, H.; Rice, W. L.; Kneipp, K. J. A. c., Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Analytical chemistry 2005, 77 (8), 2381-2385.
57. Sun, B.; Jiang, X.; Wang, H.; Song, B.; Zhu, Y.; Wang, H.; Su, Y.; He, Y. J. A. c., Surface-enhancement Raman scattering sensing strategy for discriminating trace mercuric ion (II) from real water samples in sensitive, specific, recyclable, and reproducible manners. Analytical chemistry 2015, 87 (2), 1250-1256.
58. Li, S.; Xu, L.; Ma, W.; Kuang, H.; Wang, L.; Xu, C. J. S., Triple Raman Label‐Encoded Gold Nanoparticle Trimers for Simultaneous Heavy Metal Ion Detection. Small 2015, 11 (28), 3435-3439.
59. Xu, L.; Yin, H.; Ma, W.; Kuang, H.; Wang, L.; Xu, C. J. B.; Bioelectronics, Ultrasensitive SERS detection of mercury based on the assembled gold nanochains. Biosensors and Bioelectronics 2015, 67, 472-476.
60. Ma, W.; Sun, M.; Xu, L.; Wang, L.; Kuang, H.; Xu, C. J. C. C., A SERS active gold nanostar dimer for mercury ion detection. Chemical Communications 2013, 49 (44), 4989-4991.
61. Ding, X.; Kong, L.; Wang, J.; Fang, F.; Li, D.; Liu, J. J. A. a. m.; interfaces, Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS applied materials & interfaces 2013, 5 (15), 7072-7078.
62. Frens, G. J. N. p. s., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature physical science 1973, 241 (105), 20.
63. Ouyang, H.; Li, C.; Liu, Q.; Wen, G.; Liang, A.; Jiang, Z., Resonance Rayleigh Scattering and SERS Spectral Detection of Trace Hg (II) Based on the Gold Nanocatalysis. Nanomaterials 2017, 7 (5), 114.
64. Lu, Y.; Zhong, J.; Yao, G.; Huang, Q., A label-free SERS approach to quantitative and selective detection of mercury (II) based on DNA aptamer-modified SiO2@ Au core/shell nanoparticles. Sensors and Actuators B: Chemical 2018, 258, 365-372.
65. Hong, J.; Kawashima, A.; Hamada, N. J. A. S. S., A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane. Applied Surface Science 2017, 407, 440-446.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊