|
參考文獻 1. Wang, M.; Feng, W.; Shi, J.; Zhang, F.; Wang, B.; Zhu, M.; Li, B.; Zhao, Y.; Chai, Z. J. T., Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC–ICP-MS. Talanta 2007, 71 (5), 2034-2039. 2. Leermakers, M.; Baeyens, W.; Quevauviller, P.; Horvat, M. J. T. T. i. A. C., Mercury in environmental samples: speciation, artifacts and validation. TrAC Trends in Analytical Chemistry 2005, 24 (5), 383-393. 3. Bhattacharjee, Y.; Chatterjee, D.; Chakraborty, A., Mercaptobenzoheterocyclic compounds functionalized silver nanoparticle, an ultrasensitive colorimetric probe for Hg (II) detection in water with picomolar precision: A correlation between sensitivity and binding affinity. Sensors and Actuators B: Chemical 2018, 255, 210-216. 4. Darbha, G. K.; Singh, A. K.; Rai, U. S.; Yu, E.; Yu, H.; Chandra Ray, P. J. J. o. t. A. C. S., Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. Journal of the American Chemical Society 2008, 130 (25), 8038-8043. 5. Leopold, K.; Foulkes, M.; Worsfold, P. J. J. A. c., Gold-coated silica as a preconcentration phase for the determination of total dissolved mercury in natural waters using atomic fluorescence spectrometry. Analytical chemistry 2009, 81 (9), 3421-3428. 6. Chen, J.; Chen, H.; Jin, X.; Chen, H. J. T., Determination of ultra-trace amount methyl-, phenyl-and inorganic mercury in environmental and biological samples by liquid chromatography with inductively coupled plasma mass spectrometry after cloud point extraction preconcentration. Talanta 2009, 77 (4), 1381-1387. 7. Li, J.-M.; Ma, W.-F.; You, L.-J.; Guo, J.; Hu, J.; Wang, C.-C. J. L., Highly sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates. Highly sensitive detection of target ssDNA based on SERS liquid chip using suspended magnetic nanospheres as capturing substrates 2013, 29 (20), 6147-6155. 8. Zheng, J.; He, L. J. C. R. i. F. S.; Safety, F., Surface‐enhanced Raman spectroscopy for the chemical analysis of food. Comprehensive Reviews in Food Science and Food Safety 2014, 13 (3), 317-328. 9. Zhang, L.; Li, T.; Li, B.; Li, J.; Wang, E. J. C. c., Carbon nanotube–DNA hybrid fluorescent sensor for sensitive and selective detection of mercury (II) ion. Chemical communications 2010, 46 (9), 1476-1478. 10. Liu, C.-W.; Huang, C.-C.; Chang, H.-T. J. L., Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury (II). Langmuir 2008, 24 (15), 8346-8350. 11. Luo, Y.; Xu, L.; Liang, A.; Deng, A.; Jiang, Z. J. R. A., A highly sensitive resonance Rayleigh scattering assay for detection of Hg (II) using immunonanogold as probe. RSC Advances 2014, 4 (37), 19234-19237. 12. Wen, G.; Liang, A.; Jiang, Z. J. P., Functional nucleic acid nanoparticle-based resonance scattering spectral probe. Plasmonics 2013, 8 (2), 899-911. 13. Driskell, J. D.; Lipert, R. J.; Porter, M. D. J. T. j. o. p. c. B., Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering. The journal of physical chemistry B 2006, 110 (35), 17444-17451. 14. Chen, J.; McLellan, J. M.; Siekkinen, A.; Xiong, Y.; Li, Z.-Y.; Xia, Y. J. J. o. t. A. C. S., Facile synthesis of gold− silver nanocages with controllable pores on the surface. Journal of the American Chemical Society 2006, 128 (46), 14776-14777. 15. Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzan, L. M.; de Abajo, F. J. G. J. C. S. R., Modelling the optical response of gold nanoparticles. Chemical Society Reviews 2008, 37 (9), 1792-1805. 16. Amirjani, A.; Haghshenas, D. F., Facile and on− line colorimetric detection of Hg2+ based on localized surface plasmon resonance (LSPR) of Ag nanotriangles. Talanta 2019, 192, 418-423. 17. Jiang, L.; Sun, Y.; Huo, F.; Zhang, H.; Qin, L.; Li, S.; Chen, X. J. N., Free-standing one-dimensional plasmonic nanostructures. Nanoscale 2012, 4 (1), 66-75. 18. Guselnikova, O.; Svorcik, V.; Lyutakov, O.; Chehimi, M. M.; Postnikov, P. S., Preparation of Selective and Reproducible SERS Sensors of Hg2+ Ions via a Sunlight-Induced Thiol–Yne Reaction on Gold Gratings. Sensors 2019, 19 (9), 2110. 19. Wang, G.; Lim, C.; Chen, L.; Chon, H.; Choo, J.; Hong, J. J. A.; chemistry, b., Surface-enhanced Raman scattering in nanoliter droplets: towards high-sensitivity detection of mercury (II) ions. Analytical and bioanalytical chemistry 2009, 394 (7), 1827-1832. 20. Lee, C.-I.; Choo, J.-B. J. B. o. t. K. C. S., Selective trace analysis of mercury (II) ions in aqueous media using sers-based aptamer sensor. Bulletin of the Korean Chemical Society 2011, 32 (6), 2003-2007. 21. Wen, G.; Li, J.; Liang, A.; Jiang, Z.; He, X. J. A. C. S., Resonance scattering spectral detection of trace Hg 2+ using herring sperm DNA modified nanogold as catalyst of the Fehling reaction. Analytical chemistry 2010, 68 (1), 83-88. 22. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. J. C. P. L., Raman spectra of pyridine adsorbed at a silver electrode. Chemical physics letters 1974, 26 (2), 163-166. 23. Bukowska, J.; Piotrowski, P., Surface-enhanced Raman scattering (SERS) in bioscience: a review of application. Optical Spectroscopy and Computational Methods in Biology and Medicine 2014, 29-59. 24. Wang, Y.; Yan, B.; Chen, L. J. C. r., SERS tags: novel optical nanoprobes for bioanalysis. Chemical reviews 2012, 113 (3), 1391-1428. 25. Jarvis, R. M.; Goodacre, R. J. C. S. R., Characterisation and identification of bacteria using SERS. Chemical Society Reviews 2008, 37 (5), 931-936. 26. Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. J. A. c., Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Analytical chemistry 2005, 77 (10), 3261-3266. 27. McNay, G.; Eustace, D.; Smith, W. E.; Faulds, K.; Graham, D. J. A. s., Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Applied spectroscopy 2011, 65 (8), 825-837. 28. Petry, R.; Schmitt, M.; Popp, J. J. C., Raman spectroscopy—a prospective tool in the life sciences. ChemPhysChem 2003, 4 (1), 14-30. 29. Kruszewski, S. J. C. R.; Experimental, T. J. o.; Crystallography, I., Surface enhanced Raman scattering phenomenon. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography 2006, 41 (6), 562-569. 30. Abruña, H. D., Electrochemical interfaces: modern techniques for in-situ interface characterization. Applied Physics Letters 1991, (544.6 ABR). 31. Gupta, N.; Ghosh, R. R.; Dhawan, A. In Nanoholes arrays as effective SERS substrates with multiple wavelength SERS response and large electromagnetic SERS enhancement factors, Plasmonics in Biology and Medicine XVI, International Society for Optics and Photonics: 2019; p 1089418. 32. Zhang, D.; Liang, P.; Yu, Z.; Huang, J.; Ni, D.; Shu, H.; Dong, Q.-m., The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects. Sensors and Actuators B: Chemical 2018, 256, 721-728. 33. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. J. C. r., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical reviews 2011, 111 (6), 3669-3712. 34. Aroca, R. F.; Goulet, P. J.; dos Santos, D. S.; Alvarez-Puebla, R. A.; Oliveira, O. N. J. A. c., Silver nanowire layer-by-layer films as substrates for surface-enhanced Raman scattering. Analytical chemistry 2005, 77 (2), 378-382. 35. Zhang, W.; Cai, Y.; Qian, R.; Zhao, B.; Zhu, P. J. N., Synthesis of ball-like Ag nanorod aggregates for surface-enhanced Raman scattering and catalytic reduction. Nanomaterials 2016, 6 (6), 99. 36. Li, C.; Ouyang, H.; Tang, X.; Wen, G.; Liang, A.; Jiang, Z. J. B.; Bioelectronics, A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe. Biosensors and Bioelectronics 2017, 87, 888-893. 37. Wen, G.; Liang, X.; Liu, Q.; Liang, A.; Jiang, Z. J. B.; Bioelectronics, A novel nanocatalytic SERS detection of trace human chorionic gonadotropin using labeled-free Vitoria blue 4R as molecular probe. Biosensors and Bioelectronics 2016, 85, 450-456. 38. Szlag, V. M.; Rodriguez, R. S.; He, J.; Hudson-Smith, N.; Kang, H.; Le, N.; Reineke, T. M.; Haynes, C. L., Molecular affinity agents for intrinsic surface-enhanced Raman scattering (SERS) sensors. ACS applied materials & interfaces 2018, 10 (38), 31825-31844. 39. Li, J.-M.; Ma, W.-F.; Wei, C.; Guo, J.; Hu, J.; Wang, C.-C. J. J. o. M. C., Poly (styrene-co-acrylic acid) core and silver nanoparticle/silica shell composite microspheres as high performance surface-enhanced Raman spectroscopy (SERS) substrate and molecular barcode label. Journal of Materials Chemistry 2011, 21 (16), 5992-5998. 40. Senapati, T.; Senapati, D.; Singh, A. K.; Fan, Z.; Kanchanapally, R.; Ray, P. C. J. C. C., Highly selective SERS probe for Hg (II) detection using tryptophan-protected popcorn shaped gold nanoparticles. Chemical Communications 2011, 47 (37), 10326-10328. 41. Han, D.; Lim, S. Y.; Kim, B. J.; Piao, L.; Chung, T. D. J. C. C., Mercury (II) detection by SERS based on a single gold microshell. Chemical Communications 2010, 46 (30), 5587-5589. 42. Zeng, Y.; Wang, L.; Zeng, L.; Shen, A.; Hu, J. J. T., A label-free SERS probe for highly sensitive detection of Hg2+ based on functionalized Au@ Ag nanoparticles. Talanta 2017, 162, 374-379. 43. Shukoor, M. I.; Altman, M. O.; Han, D.; Bayrac, A. T.; Ocsoy, I.; Zhu, Z.; Tan, W. J. A. a. m.; interfaces, Aptamer-nanoparticle assembly for logic-based detection. ACS applied materials & interfaces 2012, 4 (6), 3007-3011. 44. Chen, J.; Fang, Z.; Lie, P.; Zeng, L. J. A. c., Computational lateral flow biosensor for proteins and small molecules: a new class of strip logic gates. Analytical chemistry 2012, 84 (15), 6321-6325. 45. Ogawa, A.; Maeda, M. J. C. C., Easy design of logic gates based on aptazymes and noncrosslinking gold nanoparticle aggregation. Chemical Communications 2009, (31), 4666-4668. 46. Jv, Y.; Li, B.; Cao, R. J. C. c., Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chemical communications, 2010, 46 (42), 8017-8019. 47. Elbaz, J.; Shlyahovsky, B.; Li, D.; Willner, I. J. C., Parallel analysis of two analytes in solutions or on surfaces by using a bifunctional aptamer: applications for biosensing and logic gate operations. ChemBioChem 2008, 9 (2), 232-239. 48. Carell, T. J. N., Molecular computing: DNA as a logic operator. Nature 2011, 469 (7328), 45. 49. Wang, J.; Katz, E. J. A.; chemistry, b., Digital biosensors with built-in logic for biomedical applications—biosensors based on a biocomputing concept. Analytical and bioanalytical chemistry 2010, 398 (4), 1591-1603. 50. Suksai, C.; Tuntulani, T. J. C. s. r., Chromogenic anion sensors. Chemical society reviews 2003, 32 (4), 192-202. 51. Lodeiro, C.; Capelo, J. L.; Mejuto, J. C.; Oliveira, E.; Santos, H. M.; Pedras, B.; Nunez, C. J. C. S. R., Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio-inspired systems as chemosensors. Chemical Society Reviews 2010, 39 (8), 2948-2976. 52. Willets, K. A.; Van Duyne, R. P. J. A. R. P. C., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297. 53. Xia, Y.; Halas, N. J. J. M. b., Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS bulletin 2005, 30 (5), 338-348. 54. Liu, Z.; Cheng, L.; Zhang, L.; Jing, C.; Shi, X.; Yang, Z.; Long, Y.; Fang, J. J. N., Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au–Ag alloy nanourchins. Nanoscale 2014, 6 (5), 2567-2572. 55. Alvarez-Puebla, R. A.; dos Santos Jr, D. S.; Aroca, R. F. J. A., SERS detection of environmental pollutants in humic acid–gold nanoparticle composite materials. Analyst 2007, 132 (12), 1210-1214. 56. Kneipp, J.; Kneipp, H.; Rice, W. L.; Kneipp, K. J. A. c., Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Analytical chemistry 2005, 77 (8), 2381-2385. 57. Sun, B.; Jiang, X.; Wang, H.; Song, B.; Zhu, Y.; Wang, H.; Su, Y.; He, Y. J. A. c., Surface-enhancement Raman scattering sensing strategy for discriminating trace mercuric ion (II) from real water samples in sensitive, specific, recyclable, and reproducible manners. Analytical chemistry 2015, 87 (2), 1250-1256. 58. Li, S.; Xu, L.; Ma, W.; Kuang, H.; Wang, L.; Xu, C. J. S., Triple Raman Label‐Encoded Gold Nanoparticle Trimers for Simultaneous Heavy Metal Ion Detection. Small 2015, 11 (28), 3435-3439. 59. Xu, L.; Yin, H.; Ma, W.; Kuang, H.; Wang, L.; Xu, C. J. B.; Bioelectronics, Ultrasensitive SERS detection of mercury based on the assembled gold nanochains. Biosensors and Bioelectronics 2015, 67, 472-476. 60. Ma, W.; Sun, M.; Xu, L.; Wang, L.; Kuang, H.; Xu, C. J. C. C., A SERS active gold nanostar dimer for mercury ion detection. Chemical Communications 2013, 49 (44), 4989-4991. 61. Ding, X.; Kong, L.; Wang, J.; Fang, F.; Li, D.; Liu, J. J. A. a. m.; interfaces, Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS applied materials & interfaces 2013, 5 (15), 7072-7078. 62. Frens, G. J. N. p. s., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature physical science 1973, 241 (105), 20. 63. Ouyang, H.; Li, C.; Liu, Q.; Wen, G.; Liang, A.; Jiang, Z., Resonance Rayleigh Scattering and SERS Spectral Detection of Trace Hg (II) Based on the Gold Nanocatalysis. Nanomaterials 2017, 7 (5), 114. 64. Lu, Y.; Zhong, J.; Yao, G.; Huang, Q., A label-free SERS approach to quantitative and selective detection of mercury (II) based on DNA aptamer-modified SiO2@ Au core/shell nanoparticles. Sensors and Actuators B: Chemical 2018, 258, 365-372. 65. Hong, J.; Kawashima, A.; Hamada, N. J. A. S. S., A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane. Applied Surface Science 2017, 407, 440-446.
|