|
[1] A.J. Collins, R.N. Foley, D.T. Gilbertson, S.-C. Chen, United States Renal Data System public health surveillance of chronic kidney disease and end-stage renal disease, Kidney Int. Suppl. 5 (2015) 2-7. [2] K.F. Adams Jr, G.C. Fonarow, C.L. Emerman, T.H. LeJemtel, M.R. Costanzo, W.T. Abraham, R.L. Berkowitz, M. Galvao, D.P. Horton, A.S.A. Committee, Investigators, Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE), Am. Heart J. 149 (2005) 209-216. [3] L.G. Hunsicker, S. Adler, A. Caggiula, B.K. England, T. Greene, J.W. Kusek, N.L. Rogers, P.E. Teschan, G. Beck, M.o.D.i.R.D.S. Group, Predictors of the progression of renal disease in the Modification of Diet in Renal Disease Study, Kidney Int. 51 (1997) 1908-1919. [4] Z.A. Massy, J.Z. Ma, T.A. Louis, B.L. Kasiske, Lipid-lowering therapy in patients with renal disease, Kidney Int. 48 (1995) 188-198. [5] H.C. Stary, A.B. Chandler, R.E. Dinsmore, V. Fuster, S. Glagov, W. Insull Jr, M.E. Rosenfeld, C.J. Schwartz, W.D. Wagner, R.W. Wissler, A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, Circ. res. 92 (1995) 1355-1374. [6] S. Glagov, E. Weisenberg, C.K. Zarins, R. Stankunavicius, G.J. Kolettis, Compensatory enlargement of human atherosclerotic coronary arteries, New Engl. J. Med. 316 (1987) 1371-1375. [7] C.A. Schaefer, C.R.W. Kuhlmann, C. Gast, S. Weiterer, F. Li, A.K. Most, T. Neumann, U. Backenköhler, H. Tillmanns, B. Waldecker, Statins prevent oxidized low-density lipoprotein-and lysophosphatidylcholine-induced proliferation of human endothelial cells, Vascul. Pharmacol. 41 (2004) 67-73. [8] R. Ross, The pathogenesis of atherosclerosis: a perspective for the 1990s, Nature 362 (1993) 801. [9] R. Stocker, J.F. Keaney Jr, Role of oxidative modifications in atherosclerosis, Physiol. Rev. 84 (2004) 1381-1478. [10] H.R. Petty, An Introduction to Biological Membranes, in: Molecular Biology of Membranes: Structure and Function, Springer US, Boston, MA, 1993, pp. 1-5. [11] R.W. Mahley, T.L. Innerarity, S.C. Rall, K.H. Weisgraber, Plasma lipoproteins: apolipoprotein structure and function, J. Lipid Res. 25 (1984) 1277-1294. [12] A. Stalenhoef, M.J. Malloy, J.P. Kane, R.J. Havel, Metabolism of apolipoproteins B-48 and B-100 of triglyceride-rich lipoproteins in normal and lipoprotein lipase-deficient humans, Proc. Natl. Acad. Sci. U. S. A. 81 (1984) 1839-1843. [13] A. Stalenhoef, M.J. Malloy, J.P. Kane, R.J. Havel, Metabolism of apolipoproteins B-48 and B-100 of triglyceride-rich lipoproteins in patients with familial dysbetalipoproteinemia, J. clin. invest. 78 (1986) 722-728. [14] E.J. Schaefer, Lipoproteins, nutrition, and heart disease, Am. j. clin. nutr. 75 (2002) 191-212. [15] K.R. Feingold, C. Grunfeld, Introduction to lipids and lipoproteins, in: Endotext [Internet], MDText. com, Inc., 2018. [16] B.C. Kwan, F. Kronenberg, S. Beddhu, A.K. Cheung, Lipoprotein metabolism and lipid management in chronic kidney disease, J. Am. Soc. Nephrol. 18 (2007) 1246-1261. [17] S. Eisenberg, D.W. Bilheimer, R.I. Levy, F.T. Lindgren, On the metabolic conversion of human plasma very low density lipoprotein to low density lipoprotein, Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 326 (1973) 361-377. [18] M.S. Brown, J.L. Goldstein, Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis, Annu. Rev. Biochem. 52 (1983) 223-261. [19] M.A. Austin, M.-C. King, K.M. Vranizan, R.M. Krauss, Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk, Circulation 82 (1990) 495-506. [20] H. Dieplinger, R. Zechner, G.M. Kostner, The in vitro formation of HDL2 during the action of LCAT: the role of triglyceride-rich lipoproteins, J. Lipid Res. 26 (1985) 273-282. [21] C. Bruce, R.A. Chouinard Jr, A.R. Tall, Plasma lipid transfer proteins, high-density lipoproteins, and reverse cholesterol transport, Annu. Rev. Nutr. 18 (1998) 297-330. [22] S. Acton, A. Rigotti, K.T. Landschulz, S. Xu, H.H. Hobbs, M. Krieger, Identification of scavenger receptor SR-BI as a high density lipoprotein receptor, Science 271 (1996) 518-520. [23] S.A. Brown, C. Rhodes, K. Dunn, A. Gotto, W. Patsch, Effect of blood collection and processing on radioimmunoassay results for apolipoprotein AI in plasma, Clin. Chem. 34 (1988) 920-924. [24] D.J. Rader, J.M. Hoeg, H.B. Brewer, Quantitation of plasma apolipoproteins in the primary and secondary prevention of coronary artery disease, Ann. intern. med. 120 (1994) 1012-1025. [25] A. Tailleux, P. Duriez, J.-C. Fruchart, V. Clavey, Apolipoprotein A-II, HDL metabolism and atherosclerosis, Atherosclerosis 164 (2002) 1-13. [26] R. Shulman, P. Herbert, K. Wehrly, D. Fredrickson, Thf complete amino acid sequence of CI (apoLp-Ser), an apolipoprotein from human very low density lipoproteins, J. Biol. Chem. 250 (1975) 182-190. [27] M. Westerterp, J.F. Berbée, D.J. Delsing, M.C. Jong, M.J. Gijbels, V.E. Dahlmans, E.H. Offerman, J.A. Romijn, L.M. Havekes, P.C. Rensen, Apolipoprotein CI binds free fatty acids and reduces their intracellular esterification, J. Lipid Res. 48 (2007) 1353-1361. [28] N.S. Shachter, T. Ebara, R. Ramakrishnan, G. Steiner, J.L. Breslow, H.N. Ginsberg, J.D. Smith, Combined hyperlipidemia in transgenic mice overexpressing human apolipoprotein Cl, J. clin. invest. 98 (1996) 846-855. [29] M.C. Jong, M. Gijbels, V. Dahlmans, P. Gorp, S.-J. Koopman, M. Ponec, M.H. Hofker, L.M. Havekes, Hyperlipidemia and cutaneous abnormalities in transgenic mice overexpressing human apolipoprotein C1, J. clin. invest. 101 (1998) 145-152. [30] B. Bouillet, T. Gautier, L. Aho, L. Duvillard, J.-M. Petit, L. Lagrost, B. Vergès, Plasma apolipoprotein C1 concentration is associated with plasma triglyceride concentration, but not visceral fat, in patients with type 2 diabetes, Diabetes & metabolism 42 (2016) 263-266. [31] M.W. Huff, N.H. Fidge, P.J. Nestel, T. Billington, B. Watson, Metabolism of C-apolipoproteins: kinetics of C-II, C-III1 and C-III2, and VLDL-apolipoprotein B in normal and hyperlipoproteinemic subjects, J. Lipid Res. 22 (1981) 1235-1246. [32] A.A. Kei, T.D. Filippatos, V. Tsimihodimos, M.S. Elisaf, A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease, Metab. 61 (2012) 906-921. [33] A. Kawakami, M. Aikawa, P. Libby, P. Alcaide, F.W. Luscinskas, F.M. Sacks, Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells, Circulation 113 (2006) 691-700. [34] A. Hiukka, M. Ståhlman, C. Pettersson, M. Levin, M. Adiels, S. Teneberg, E.S. Leinonen, L.M. Hultén, O. Wiklund, M. Orešič, ApoCIII-enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan, Diabetes 58 (2009) 2018-2026. [35] S. Rall, K.H. Weisgraber, R.W. Mahley, Human apolipoprotein E. The complete amino acid sequence, J. Biol. Chem. 257 (1982) 4171-4178. [36] R.W. Mahley, Apolipoprotein E: cholesterol transport protein with expanding role in cell biology, Science 240 (1988) 622-630. [37] R.W. Mahley, Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders, J. Mol. Med. 94 (2016) 739-746. [38] B. Lamarche, S. Moorjani, P.J. Lupien, B. Cantin, P.-M. Bernard, G.R. Dagenais, J.-P. Despre´ s, Apolipoprotein AI and B Levels and the Risk of Ischemic Heart Disease During a Five-Year Follow-up of Men in the Que´ bec Cardiovascular Study, Circulation 94 (1996) 273-278. [39] Y. Kesäniemi, W.F. Beltz, S.M. Grundy, Comparisons of metabolism of apolipoprotein B in normal subjects, obese patients, and patients with coronary heart disease, J. clin. invest. 76 (1985) 586-595. [40] T. Demant, D. Bedford, C.J. Packard, J. Shepherd, Influence of apolipoprotein E polymorphism on apolipoprotein B-100 metabolism in normolipemic subjects, J. clin. invest. 88 (1991) 1490-1501. [41] J. Davignon, R.E. Gregg, C.F. Sing, Apolipoprotein E polymorphism and atherosclerosis, Arteriosclerosis. 8 (1988) 1-21. [42] Y. Uchida, Y. Kurano, S. Ito, Establishment of monoclonal antibody against human Apo B‐48 and measurement of Apo B‐48 in serum by ELISA method, J. clin. lab. anal. 12 (1998) 289-292. [43] B.O. Schneeman, L. Kotite, K.M. Todd, R.J. Havel, Relationships between the responses of triglyceride-rich lipoproteins in blood plasma containing apolipoproteins B-48 and B-100 to a fat-containing meal in normolipidemic humans, Proc. Natl. Acad. Sci. U. S. A. 90 (1993) 2069-2073. [44] J.S. Cohn, E.J. Johnson, J.S. Millar, S.D. Cohn, R.W. Milne, Y. Marcel, R. Russell, E. Schaefer, Contribution of apoB-48 and apoB-100 triglyceride-rich lipoproteins (TRL) to postprandial increases in the plasma concentration of TRL triglycerides and retinyl esters, J. Lipid Res. 34 (1993) 2033-2040. [45] M.G. Shlipak, L.F. Fried, M. Cushman, T.A. Manolio, D. Peterson, C. Stehman-Breen, A. Bleyer, A. Newman, D. Siscovick, B. Psaty, Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors, Jama 293 (2005) 1737-1745. [46] M.C. Batista, F.K. Welty, M.R. Diffenderfer, M.J. Sarnak, E.J. Schaefer, S. Lamon-Fava, B.F. Asztalos, G.G. Dolnikowski, M.E. Brousseau, J.B. Marsh, Apolipoprotein AI, B-100, and B-48 metabolism in subjects with chronic kidney disease, obesity, and the metabolic syndrome, Metab. 53 (2004) 1255-1261. [47] G. Appel, Lipid abnormalities in renal disease, Kidney int. 39 (1991) 169-183. [48] M. Arnadottir, Pathogenesis of dyslipoproteinemia in renal insufficiency: the role of lipoprotein lipase and hepatic lipase, Scand. J. Clin. Lab. Invest. 57 (1997) 1-11. [49] M. Senti, R. Romero, J. Pedro-Botet, A. Pelegrí, X. Nogués, J. Rubiés-Prat, Lipoprotein abnormalities in hyperlipidemic and normolipidemic men on hemodialysis with chronic renal failure, Kidney int. 41 (1992) 1394-1399. [50] E. Ok, A.G. Basnakian, E.O. Apostolov, Y.M. Barri, S.V. Shah, Carbamylated low-density lipoprotein induces death ofendothelial cells: A link to atherosclerosis in patients with kidney disease, Kidney int. 68 (2005) 173-178. [51] L.M. Kraus, A.P. Kraus Jr, Carbamoylation of amino acids and proteins in uremia, Kidney int. 59 (2001) S102-S107. [52] E.O. Apostolov, S.V. Shah, E. Ok, A.G. Basnakian, Quantification of carbamylated LDL in human sera by a new sandwich ELISA, Clin. Chem. 51 (2005) 719-728. [53] E.O. Apostolov, A.G. Basnakian, X. Yin, E. Ok, S.V. Shah, Modified LDLs induce proliferation-mediated death of human vascular endothelial cells through MAPK pathway, American Am. j. physiol, Heart circ. physiol. 292 (2007) H1836-H1846. [54] O.-N. Goek, A. Köttgen, R.C. Hoogeveen, C.M. Ballantyne, J. Coresh, B.C. Astor, Association of apolipoprotein A1 and B with kidney function and chronic kidney disease in two multiethnic population samples, Nephrol. dial. transplant. 27 (2012) 2839-2847. [55] A. Thompson, J. Danesh, Associations between apolipoprotein B, apolipoprotein AI, the apolipoprotein B/AI ratio and coronary heart disease: a literature‐based meta‐analysis of prospective studies, J. intern. med. 259 (2006) 481-492. [56] M. Benn, Apolipoprotein B levels, APOB alleles, and risk of ischemic cardiovascular disease in the general population, a review, Atherosclerosis 206 (2009) 17-30. [57] P. Barter, C. Ballantyne, R. Carmena, M.C. Cabezas, M.J. Chapman, P. Couture, J. De Graaf, P. Durrington, O. Faergeman, J. Frohlich, Apo B versus cholesterol in estimating cardiovascular risk and in guiding therapy: report of the thirty‐person/ten‐country panel, J. intern. med. 259 (2006) 247-258. [58] F.M. Sacks, The apolipoprotein story, Atherosclerosis Supplements 7 (2006) 23-27. [59] M. Czaplińska, A. Ćwiklińska, M. Sakowicz-Burkiewicz, E. Wieczorek, A. Kuchta, R. Kowalski, B. Kortas-Stempak, A. Dębska-Ślizień, M. Jankowski, E. Król, Apolipoprotein E gene polymorphism and renal function are associated with apolipoprotein E concentration in patients with chronic kidney disease, Lipids in health and disease 18 (2019) 60. [60] P.-O. Attman, O. Samuelsson, P. Alaupovic, The effect of decreasing renal function on lipoprotein profiles, Nephrol. dial. transplant. 26 (2011) 2572-2575. [61] P.-O. Attman, P. Alaupovic, M. Tavella, C. Knight-Gibson, Abnormal lipid and apolipoprotein composition of major lipoprotein density classes in patients with chronic renal failure, Nephrol. dial. transplant. 11 (1996) 63-69. [62] M. Cackowska, E. Król, A. Ćwiklińska, E. Wieczorek, B. Kortas-Stempak, A. Kuchta, M. Jankowski, A. Dębska-Ślizień, Changes of apolipoprotein cIII concentration in chronic kidney disease, Nephrol. dial. transplant. 33 (2018) i438-i438. [63] R. Holm, H.V. Nicolajsen, R.A. Hartvig, P. Westh, J. Østergaard, Complexation of tauro‐and glyco‐conjugated bile salts with three neutral β‐CDs studied by ACE, Electrophoresis 28 (2007) 3745-3752. [64] E.M. Del Valle, Cyclodextrins and their uses: a review, Process Biochem. 39 (2004) 1033-1046. [65] N.E. Olesen, P. Westh, R. Holm, Displacement of drugs from cyclodextrin complexes by bile salts: a suggestion of an intestinal drug-solubilizing capacity from an in vitro model, J. Pharm. Sci. 105 (2016) 2640-2647. [66] A. Cooper, M.A. Nutley, P. Camilleri, Microcalorimetry of Chiral Surfactant− Cyclodextrin Interactions, Anal. Chem. 70 (1998) 5024-5028. [67] H.-W. Liao, S.-W. Lin, U.-I. Wu, C.-H. Kuo, Rapid and sensitive determination of posaconazole in patient plasma by capillary electrophoresis with field-amplified sample stacking, J. Chromatogr. 1226 (2012) 48-54. [68] F. Kitagawa, K. Otsuka, Recent applications of on-line sample preconcentration techniques in capillary electrophoresis, J. Chromatogr. 1335 (2014) 43-60. [69] Y. He, X. Li, P. Tong, M. Lu, L. Zhang, G. Chen, An online field-amplification sample stacking method for the determination of β2-agonists in human urine by CE-ESI/MS, Talanta 104 (2013) 97-102.
|