跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/10 22:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:秦昌煜
研究生(外文):Chin, Chang-Yu
論文名稱:發展多重表徵教學模組對八年級學生溫度與熱單元學習成效影響之行動研究
論文名稱(外文):Action Research on the Influence of Developing Multiple Representation Teaching Module on the Effect of Temperature and Heat Unit Learning in Eighth Grade Students
指導教授:林建隆林建隆引用關係張誌原張誌原引用關係
指導教授(外文):Lin, Jang-LongChang, Jih-Yuan
口試委員:陳均伊鄭孟斐林建隆
口試委員(外文):Chen, Jun-YiCheng, Meng-FeiLin, Jang-Long
口試日期:2019-06-11
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:115
中文關鍵詞:多重表徵行動研究溫度與熱
外文關鍵詞:Mutiple representationAction researchTemperature and Heat
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本研究採行動研究法,旨在發展多重表徵溫度與熱單元教學模組,探討發展與施行模組過程中遭遇的困難及解決策略,及八年級學生的學習成效。研究對象為臺灣中部一所大型都市國中的兩個常態班級,以研究團隊共同發展的多重表徵教學模組進行教學。研究工具為溫度與熱成就測驗前、後測與半結構性晤談單。資料蒐集包括:溫度與熱成就測驗前、後測、研究團隊共備觀議課影音及會議、課程等書面資料、多重表徵教學模組學習單、課室錄影、錄音、學生晤談資料與教師日誌。以質性資料分析為主,並輔以成就測驗前、後測成對樣本t檢定量化資料分析,研究結果發現:
一、 教師團隊發展融入八年級溫度與熱單元多重表徵教學模組階段,因不熟練多重表徵教學之應用,導致所設計之溫度與熱的多重表徵不夠具體、對學生太過於抽象以及不符真實情境之視覺-圖像表徵,然而在經過研究團隊的共同備課討論後,上述問題均被提出且獲得解決。
二、 教師在施行多重表徵教學模組階段,因學生誤以為溫度與水柱高度具比例關係、誤解溫度-加熱時間座標圖的概念推論方式等,導致溫度與水柱高度的換算結果錯誤、座標軸的混淆以及誤認為溫度與加熱時間成正比。經研究團隊對第一循環教學的觀察、反思與修改,上述問題均於第二循環教學獲得解決。
三、 學習成效方面,兩循環溫度與熱成就測驗後測均顯著優於前測,且藉由質性資料分析發現學生能透過溫度計簡圖與比例式表徵的互補性,理解溫差與水柱高度差間的比例關係,以及透過模型累進,理解熱與熱平衡概念,並透過表格與座標圖的動態連結,理解座標圖中,兩變數成正比的條件與能正確推論出溫度-加熱時間座標圖中不同物體其隨加熱時間改變之溫度變化情形。
The present study adopted an action research method, and its purpose is to develop an instructional module about heat temperature based on multiple representations approach. It explores the challenges and solution strategies encountered while developing and implementing the instructional module and the learning outcomes of the students. The participants of the study are from two regular classes of eighth-graders at an urban junior high school in central Taiwan. The lessons were taught with the instructional module developed by a research team. The research tools included achievement tests administered before and after the designated course, semi-structured interview form. The data collection included worksheets of multiple representations, video and audio recordings, meeting minutes with the research team, interview reports of the students, and teacher diaries. Qualitative data was the primary materials of analysis and was supplemented with quantitative data such as achievement tests before and after the course to run the paired t-test.
The results of the study indicate the following phenomena. First, in the instructional module development phase, the research team did not master the application of multiple representations scaffolding techniques, which led the team failed to design temperature and heat multiple representations that were concrete enough for the participants. However, the problems were fixed after group lesson planning discussions with other members of the team. Second, in the implementation phase, the students falsely assumed that temperature correlates the height of water column and confused with how to deduct temperature-time graph, which led to uncorrected temperature and water-column height conversion results, inaccurate coordinates of time-temperature graphs, and erred conclusion that heating time is proportional to temperature. The difficulties were solved in the second teaching cycle with improvising and modification based on the effort of the team classroom observation and reflection during the first teaching cycle. Third, in terms of learning outcomes, participants did significantly better at post achievement tests than pre-tests in both runs. And the qualitative data indicates that the students learned the difference of temperature is proportional to the difference of water-column height through complementary of simplified thermometer diagrams and proportion scales. Through model progression, they acquired the concept of heat and thermal equilibrium. Besides, they understood the condition for two variables proportionate to each other on coordinate planes and correctly deduct how the temperature of different objects change as heating time alternates via dynamic linking between tables and coordinate plane graphs.
目錄
中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與待答問題 2
第三節 名詞解釋 3
第四節 研究範圍與限制 4
第二章 文獻探討 5
第一節 表徵 5
第二節 多重表徵教學 12
第三節 溫度與熱單元之相關實徵性研究 22
第三章 研究方法 31
第一節 研究方法與設計 31
第二節 研究者背景、理念、角色與研究團隊 32
第三節 研究對象與情境 34
第四節 研究教材設計 36
第五節 研究工具 45
第六節 研究流程 47
第七節 資料蒐集與分析 50

第四章 研究結果 55
第一節 教師發展溫度與熱單元多重表徵教學模組遭遇的問題與解決策略 55
第二節 教師施行第一循環教學模組的學習成效與遭遇問題及其解決策略 61
第三節 教師施行第二循環教學模組的學習成效與遭遇問題 71
第五章 結論與建議 79
第一節 結論 79
第二節 建議 83
參考文獻 85
一、中文部分: 85
二、外文部分: 85
附錄一 溫度與熱成就測驗試題 95
附錄二 多重表徵教學模組溫度與熱單元第二循環教案 99
附錄三 多重表徵教學模組溫度與熱單元學習單 107
參考文獻
一、中文部分:
張春興(1989)。張氏心理學辭典。台北市:東華書局。
張世忠、李俊毅、謝幸芬 (2013)。一個同儕教練為基礎之發展模式對國中科學教師 PCK 之影響:以< 熱與溫度> 單元為例。科學教育學刊,21(1),1-24。
蔡錕承、張欣怡(2011)。結合實物與虛擬實驗促進八年級學生「溫度與熱」知識整合,實驗能力與學習策略之研究。科學教育學刊,19(5),435-459。
謝秀月、郭重吉(1991)。小學,師院學生熱與溫度概念的另有架構。科學教育,(2),227-247。

二、外文部分:
Adadan, E., & Yavuzkaya, M. N. (2018). Examining the progression and consistency of thermal concepts: a cross-age study. International Journal of Science Education, 40(4), 371-396.
Ainsworth, S. (1999). The functions of multiple representations. Computers & education, 33(2-3), 131-152.
Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and instruction, 16(3), 183-198.
Ainsworth, S. (2008). The educational value of multiple-representations when learning complex scientific concepts. In Visualization: Theory and practice in science education (pp. 191-208). Springer, Dordrecht.
Ainsworth, S., Wood, D., & O'Malley, C. (1998). There is more than one way to solve a problem: Evaluating a learning environment that supports the development of children's multiplication skills. Learning and Instruction, 8(2), 141-157.
Albert, E. (1978). Development of the Concept of Heat in Children. Science Education, 62(3), 389-99.
Anderson, J. R. (2005). Cognitive psychology and its implications. WH Freeman/Times Books/Henry Holt & Co.
Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. Longman.
Bell, P. (2004). On the theoretical breadth of design-based research in education. Educational psychologist, 39(4), 243-253.
Berg, C. A., & Phillips, D. G. (1994). An investigation of the relationship between logical thinking structures and the ability to construct and interpret line graphs. Journal of Research in Science Teaching, 31(4), 323-344.
Berthold, K., & Renkl, A. (2009). Instructional aids to support a conceptual understanding of multiple representations. Journal of Educational Psychology, 101(1), 70.
Bodemer, D., Ploetzner, R., Feuerlein, I., & Spada, H. (2004). The active integration of information during learning with dynamic and interactive visualisations. Learning and Instruction, 14(3), 325-341.
Brasell, H. M. (1990). Graphs, graphing, and graphers. What research says to the science teacher, 6, 69-85.
Bruner, J. S. (1964). The course of cognitive growth. American psychologist, 19(1), 1.
Carr, W., & Kemmis, S. (1986). Becoming critical: education knowledge and action research. Falmer Press.
Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2008). An evaluation of a teaching intervention to promote students’ ability to use multiple levels of representation when describing and explaining chemical reactions. Research in Science Education, 38(2), 237-248.
Chang, H. Y., Quintana, C., & Krajcik, J. S. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter. Science education, 94(1), 73-94.
ChanLin, L. (2001). Formats and prior knowledge on learning in a computer‐based lesson. Journal of Computer Assisted Learning, 17(4), 409-419.
Chi, M. T., Slotta, J. D., & De Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and instruction, 4(1), 27-43.
Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational psychology review, 3(3), 149-210.
Cohen, D. K., & Ball, D. L. (2001). Making change: Instruction and its improvement. Phi Delta Kappan, 83(1), 73-77.
Cox, R., & Brna, P. (1995). Supporting the use of external representations in problem solving: The need for flexible learning environments. Journal of Artificial intelligence in Education, 6, 239-302.
Davis, E. A., & Petish, D. A. (2001). Developing expertise in science teaching and in science teacher education. In American educational research association conference, Seattle.
de Koning, B. B., & Tabbers, H. K. (2011). Facilitating understanding of movements in dynamic visualizations: An embodied perspective. Educational Psychology Review, 23(4), 501-521.
diSessa, A. A., Hammer, D., Sherin, B., & Kolpakowski, T. (1991). Inventing graphing: Meta-representational expertise in children. Journal of Mathematical Behavior, 10(2), 117-160.
Erickson, G. L. (1979). Children's conceptions of heat and temperature. Science education, 63(2), 221-230.
Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., ... & LeMaster, R. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical review special topics-physics education research, 1(1), 010103.
Frederiksen, J. R., White, B. Y., & Gutwill, J. (1999). Dynamic mental models in learning science: The importance of constructing derivational linkages among models. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 36(7), 806-836.
Galili, I., & Lehavi, Y. (2006). Definitions of physical concepts: A study of physics teachers’ knowledge and views. International Journal of Science Education, 28(5), 521-541.
Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized simulations. The Journal of the learning sciences, 14(1), 69-110.
Guo, S. W., & Thompson, E. A. (1992). Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 361-372.
Hart, C., Mulhall, P., Berry, A., Loughran, J., & Gunstone, R. (2000). What is the purpose of this experiment? Or can students learn something from doing experiments?. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 37(7), 655-675.
Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty‐first century. Science education, 88(1), 28-54.
Johnson, S. (1998). What's in a representation, why do we care, and what does it mean? Examining evidence from psychology. Automation in Construction, 8(1), 15-24.
Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of chemical education, 70(9), 701.
Kali, H. D. (2006). First-year university biology students' difficulties with graphing skills (Doctoral dissertation).
Kohl, P. B., Rosengrant, D., & Finkelstein, N. D. (2007). Strongly and weakly directed approaches to teaching multiple representation use in physics. Physical Review Special Topics-Physics Education Research, 3(1), 010108.
Kozma, R. B., Russell, J., Jones, T., Marx, N., & Davis, J. (1996). The use of multiple, linked representations to facilitate science understanding. In Based on presentations at the NATO Symposium on International Perspectives on the Psychological Foundations of Technology-Based Learning Environments, Crete, Greece, Jul 1992, and at the 5th EARLI Conference, Aix-en-Provence, France, Sep 1993.. Lawrence Erlbaum Associates, Inc.
Kozma, R., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and tools in the chemistry laboratory and their implications for chemistry learning. The Journal of the Learning Sciences, 9(2), 105-143.
Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive science, 11(1), 65-100.
Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Harvard university press.
Lemke JL (1998). Multiplying meaning: visual and verbal semiotics in scientific text. In: Martin JR, Vell R (eds) Reading science: critical and functional perspectives on discourses of science. Routledge, New York, pp 87–113
Lemke, J. L. (2004). The literacies of science. Crossing borders in literacy and science instruction: Perspectives on theory and practice, 33-47.
Liu, S. C. (2011). What is the thing we call heat? A study on diverse representations of the basic thermal concepts in and for school science. In Science education in international contexts (pp. 17-28). SensePublishers.
McDermott, L. C., Rosenquist, M. L., & Van Zee, E. H. (1987). Student difficulties in connecting graphs and physics: Examples from kinematics. American Journal of Physics, 55(6), 503-513.
McKinney, W. J. (1997). The educational use of computer based science simulations: Some lessons from the philosophy of science. Science & Education, 6(6), 591-603.
Mokros, J. R., & Tinker, R. F. (1987). The impact of microcomputer‐based labs on children's ability to interpret graphs. Journal of research in science teaching, 24(4), 369-383.
Moreno, R., & Durán, R. (2004). Do multiple representations need explanations? The role of verbal guidance and individual differences in multimedia mathematics learning. Journal of educational psychology, 96(3), 492.
Neisser, U. (2014). Cognitive psychology: Classic edition. Psychology Press.
Padilla, M. J., McKenzie, D.L. & SHAW, E.L. (1986). An examination of the line graphing ability of students in grades seven through twelve. School Science and Mathematics, 86(1), 20-26.
Palincsar, A. S., & Magnusson, S. J. (2001). The interplay of first-hand and second-hand investigations to model and support the development of scientific knowledge and reasoning.
Pathare, S. R., & Pradhan, H. C. (2010). Students’ misconceptions about heat transfer mechanisms and elementary kinetic theory. Physics Education, 45(6), 629.
Prain, V., & Waldrip, B. (2006). An exploratory study of teachers’ and students’ use of multi‐modal representations of concepts in primary science. International Journal of Science Education, 28(15), 1843-1866.
Puntambekar, S., Stylianou, A., & Goldstein, J. (2007). Comparing classroom enactments of an inquiry curriculum: Lessons learned from two teachers. The Journal of the Learning Sciences, 16(1), 81-130.
Resnick, L., & Omanson, S. (1987). Learning to understand arithmetic. Advances in instructional psychology.
Ryoo, K., & Bedell, K. (2019). Supporting linguistically diverse students' science learning with dynamic visualizations through discourse‐rich practices. Journal of Research in Science Teaching, 56(3), 270-301.
Scaife, M., & Rogers, Y. (1996). External cognition: how do graphical representations work?. International journal of human-computer studies, 45(2), 185-213.
Schnotz, W. (2002). Commentary: Towards an integrated view of learning from text and visual displays. Educational psychology review, 14(1), 101-120.
Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and instruction, 13(2), 227-237.
Slovin, H. (2000). Moving to proportional reasoning. Mathematics teaching in the middle school, 6(1), 58.
Stenning, K., & Oberlander, J. (1995). A cognitive theory of graphical and linguistic reasoning: Logic and implementation. Cognitive science, 19(1), 97-140.
Tairab, H. H., & Khalaf Al-Naqbi, A. K. (2004). How do secondary school science students interpret and construct scientific graphs?. Journal of Biological Education, 38(3), 127-132.
Thomaz, M. F., Malaquias, I. M., Valente, M. C., & Antunes, M. J. (1995). An attempt to overcome alternative conceptions related to heat and temperature. Physics Education, 30(1), 19.
Tsui, C. Y. (2003). Teaching and learning genetics with multiple representations (Doctoral dissertation, Curtin University).
Tytler, R., Prain, V., & Peterson, S. (2007). Representational issues in students learning about evaporation. Research in Science Education, 37(3), 313-331.
van der Meij, J., & de Jong, T. (2006). Supporting students' learning with multiple representations in a dynamic simulation-based learning environment. Learning and instruction, 16(3), 199-212.
White, B. Y. (1993). ThinkerTools: Causal models, conceptual change, and science education. Cognition and instruction, 10(1), 1-100.
Wong, C. L., Chu, H. E., & Yap, K. C. (2016). Are alternative conceptions dependent on researchers’methodology and definition?: A review of empirical studies related to concepts of heat. International Journal of Science and Mathematics Education, 14(3), 499-526.
Wu, H. K., & Huang, Y. L. (2007). Ninth‐grade student engagement in teacher‐centered and student‐centered technology‐enhanced learning environments. Science Education, 91(5), 727-749.
Wu, H. K., & Krajcik, J. S. (2006a). Exploring middle school students' use of inscriptions in project‐based science classrooms. Science Education, 90(5), 852-873.
Wu, H. K., & Krajcik, J. S. (2006b). Inscriptional practices in two inquiry‐based classrooms: A case study of seventh graders' use of data tables and graphs. Journal of research in science teaching, 43(1), 63-95.
Wu, H. K., & Puntambekar, S. (2012). Pedagogical affordances of multiple external representations in scientific processes. Journal of Science Education and Technology, 21(6), 754-767.
Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science education, 88(3), 465-492.
Yeo, S., & Zadnik, M. (2001). Introductory thermal concept evaluation: Assessing students' understanding. The Physics Teacher, 39(8), 496-504.
Yerushalmy, M. (1991). Student perceptions of aspects of algebraic function using multiple representation software. Journal of Computer Assisted Learning, 7(1), 42-57.
Zhang, J., & Norman, D. A. (1994). Representations in distributed cognitive tasks. Cognitive science, 18(1), 87-122.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top