|
一、中文部分: 王慧明、林啟超(2016)。合作學習對國中生學習理化學習動機與學習表現之影響。東海教育評論,12,37-68。 林生傳(2007)。教育心理學。台北市:五南出版社。 林坤誼(2014)。STEM 科際整合教育培養整合理論與實務的科技人才。科技與人力教育季刊,1(1),2-17。 林建平(2003)。學習動機的認知理論及其在教育上的應用。國教新知,49(3),17-27。 林建隆、徐順益(2007)。國中自然與生活科技教師發展 5E 探究式光學單元教學模組之研究。物理教育學刊,8(1),1-16。 林煥祥、洪振方、佘曉清、李松濤、李暉、秦爾聰(2016)。PISA 2015。發表於第三十二屆科學教育國際研討會。臺中市:中華民國科學教育學會。 林寶山(1990)。教學論-理論與方法。台北市:五南出版社。 邱美虹(2016)。科學模型與建模:科學素養中的模型認知與建模能力。臺灣化學教育,11。查詢日期:106 年 8 月 21 日,檢自 http://chemed.chemistry.org.tw/?p=14186。 張文哲(譯)(2013)。教育心理學-理論與實際(原作者:Robert E.Slavin)。台北市:學富文化。 張春興(2007)。教育心理學-三化取向的理論與實踐 重修二版。台北市:東華。 張英琦、林建隆、鄭孟斐、張誌原(2017)。多面向概念改變架構融入 5E 探究式教學策略對概念改變成效的探討-以轉動與力矩單元為例。師資培育與教師專業發展期刊,10(3),87-117. 張珮珊、賴吉永、溫媺純(2017)。科學探究與實作課程的發展,實施與評量: 以實驗室中的科學論證為核心之研究。科學教育學刊,25(4),355-389。 陳文典、劉德生(1994)。國小學童對熱與溫度概念的認知。科學教育學刊,2(2),77-113。 陳家騏(2017)。探究與實作初探-以菜瓜布海綿的最大靜摩擦力測量為何。物理教育學刊,18(1),51-63。 陳家騏、古建國(2017)。STEM 教學應用於高中探究與實作課程之行動研究-以摩擦力為例。物理教育學刊,18(2),17-38。 楊秀停、王國華(2007)。實施引導式探究教學對於國小學童學習成效之影響。科學教育學刊,15(4),439-459。 葉炳煙(2013)。學習動機定義與相關理論之研究。屏東教大體育,(16),285-293。 劉湘瑤(2016)。科學探究的教學與評量。科學研習,55(2),5-11。 蔡錕承、張欣怡(2011)。結合實物與虛擬實驗促進八年級學生「溫度與熱」知識 整合,實驗能力與學習策略之研究。科學教育學刊,19(5),435-459。 鄭志鵬(2012)。具有區分性教學特性的科學探究課程設計─以熱學為例。中等教育,63(1),108-119。 謝秀月、郭重吉(1991)。小學、師院學生熱與溫度概念的另有架構。科學教育,(2),227-247。 蘇育男、徐順益(2009)。融入多面向架構之 5E 教學模式對八年級學生熱學概念改變與學習動機之研究。數理學科教學知能,1,45-63。
二、外文部分: Acevedo-Díaz, J. A., García-Carmona, A. & Aragón, M. M. (2017). Enseñar y aprender sobre naturaleza de laciencia mediante el análisis de controversias de historia de la ciencia. Resultados y conclusiones de unproyecto de investigación didáctica. Madrid: Organización de Estados Iberoamericanos para la Educación, la Ciencia y la Cultura (OEI). Adadan, E., & Yavuzkaya, M. N. (2018). Examining the progression and consistency of thermal concepts: a cross-age study. International Journal of Science Education, 40(4), 371-396. Albert, E. (1978). Development of the concept of heat in children. Science Education, 62(3), 389 – 399. Ames, C. A. (1990). Motivation: what teachers need to know?. Teachers College Record, 91, 409-421. Arnold, J. C., Kremer, K., & Mayer, J. (2014). Understanding students ’ experiments — What kind of support do they need in inquiry tasks?. International Journal of Science Education, 36(16), 2719 – 2749. Atkin, J. M. & Karplus, R. (1962). Discovery of invention?. Science Teacher, 29(5), 45. Atkinson, J. W. (1964). An Introduction to Motivation. Princeton, NJ: Van Nostrand. Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26 – 29. Bandura, A. (1982). Self-efficacy mechanism in human agency. American psychologist, 37(2), 122. Bathgate, M., & Schunn, C. (2017). The psychological characteristics of experiences that influence science motivation and content knowledge. International Journal of Science Education, 39(17), 2402-2432. Bertsch, C., Kapelari, S., & Unterbruner, U. (2014). From cookbook experiments to inquiry based primary science: Influence of inquiry based lessons on interest and conceptual understanding. Inquiry in Primary Science Education, 1, 20-31. Britner, S. L., & Pajares, F. (2006). Sources of science self‐efficacy beliefs of middle school students. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 43(5), 485-499. Brophy, J. (2010). Motivating Students to Learn. 3rd Edition, Routledge, Abingdon-on-Thames. Bunterm, T., Lee, K., Lan, J. N., Srikoon, S., Vangpoomyai, P., Rattanavongsa, J., & Rachahoon, G. (2014). Do different levels of inquiry lead to different learning outcomes? A comparison between guided and structured inquiry. International Journal of Science Education, 36(12), 1937 – 1959. Bybee, R. W. (2014). The BSCS 5E instructional model: Personal reflections and contemporary implications. Science and Children, 51(8), 10-13. Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, Co: BSCS, 5, 88-98. Cañal, P., García-Carmona, A., & Cruz-Guzmán, M. (2016). Didáctica de las ciencias experimentales en educación primaria. Madrid: Paraninfo. Chi, M. T. H. & Slotta, J. D. (1993). The ontological coherence of intuitive physics.Cognition and Instruction, 10(2 & 3), 249 – 260. Chin, C., & Osborne, J. (2008). Students ’ questions: A potential resource for teaching and learning science. Studies in Science Education, 44(1), 1 – 39. Chiou, G.-L. & Anderson, O. R. (2010). A multi-dimensional cognitive analysis of undergraduate physics students ’ understanding of heat conduction. International Journal of Science Education, 32(16), 2113 – 2142. Chu, H. E., Treagust, D. F., Yeo, S., & Zadnik, M. (2012). Evaluation of students’ understanding of thermal concepts in everyday contexts. International Journal of Science Education, 34(10), 1509-1534. Cruz-Guzmán, M., García-Carmona, A., & Criado, A. M. (2017). An analysis of the questions proposed by elementary pre-service teachers when designing experimental activities as inquiry. International Journal of Science Education, 39(13), 1755 – 1774. Elliot, A. J., & McGregor, H. A. (2001). A 2× 2 achievement goal framework. Journal of personality and social psychology, 80(3), 501. Erickson, G.L. (1979). Children’s conceptions of heat and temperature. Science Education, 63(2),221–230. García-Carmona, A. (2012). “¿Qué he comprendido? ¿qué sigo sin entender?”. Promoviendo la auto-reflexión en clase de ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(2), 231 – 240. García-Carmona, A., & Acevedo, J. A. (2016). Learning about the nature of science using newspaper articles with scientific content: A study in initial primary teacher education. Science & Education, 25(5 – 6), 523 – 546. García-Carmona, A., & Acevedo-Díaz, J. A. (2018). The Nature of Scientific Practice and Science Education. Science & Education, 27(5-6), 435-455. García-Carmona, A., Criado, A. M., & Cruz-Guzmán, M. (2017). Primary pre-service teachers ’ skills in planning a guided scientific inquiry. Research in Science Education, 47(5), 989 – 1010. García-Carmona, A., Criado, A. M., & Cruz-Guzmán, M. (2018). Prospective primary teachers ’ prior experiences, conceptions, and pedagogical valuations of experimental activities in science education. International Journal of Science and Mathematics Education, 16(2), 237 – 253. Georgiou, H. & Sharma, M. D. (2012). University students ’ understanding of thermal physics in everyday contexts. International Journal of Science and Mathematics Education, 10(5), 1119 – 1142. Goldston, M. J., Dantzler, J., Day, J., & Webb, B. (2013). A psychometric approach to the development of a 5E lesson plan scoring instrument for inquiry-based teaching. Journal of Science Teacher Education, 24(3), 527-551. Graesser, A. C., Ozuru, Y., & Sullins, J. (2010). What is a good question? In M. G. McKeown & L. Kucan (Eds.), Bringing reading research to life (pp. 112 – 141). New York, NY: The Guildford Press. Harlen, W. (2013). Assessment & inquiry-based science education: Issues in policy and practice. Trieste: IAP. Harrison, A. G., Grayson, D. J., & Treagust, D. F. (1999). Investigating a grade 11 student’s evolving conceptions of heat and temperature. Journal of Research in Science Teaching, 36(1), 55–87. Hayes, D. (2009). Encyclopedia of primary education. New York, NY: Routledge. Hewson, M. G. & Hamlyn, D. (1984). The influence of intellectual environment on conceptions of heat. European Journal of Science Education, 6(4), 254 – 262. Hodson, D. (2005). Teaching and learning chemistry in the laboratory: A critical look at the research. Educación Química, 16(1), 30 – 38. Hofstein, A., & Mamlok-Naaman, R. (2007). The laboratory in science education: the state of the art. Chemistry education research and practice, 8(2), 105-107. Howes, E. V., Lim, M., & Campos, J. (2009). Journeys into inquiry‐based elementary science: Literacy practices, questioning, and empirical study. Science Education, 93(2), 189-217. Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75 – 86. Klucevsek, K. M., & Brungard, A. B. (2016). Information literacy in science writing: How students find, identify,and use scientific literature. International Journal of Science Education, 38(17), 2573 – 2595. Koksal, E. A., & Berberoglu, G. (2014). The effect of guided-inquiry instruction on 6th grade Turkish students ’ achievement, science process skills and attitudes toward science. International Journal of Science Education, 36(1), 66 – 78. Kuo, Y. R., Tuan, H. L., & Chin, C. C. (2018). The influence of inquiry-based teaching on male and female students’ motivation and engagement. Research in Science Education. https://doi.org/10.1007/s11165-018-9701-3. Lee, C. S., Hayes, K. N., Seitz, J., DiStefano, R., & O'Connor, D. (2016). Understanding motivational structures that differentially predict engagement and achievement in middle school science. International Journal of Science Education, 38(2), 192 – 215. Lewis, E. L., & Linn, M. C. (1994). Heat energy and temperature concepts of adolescents, adults, and experts: Implications for curricular improvements. Journal of Research in Science Teaching, 31(6), 657-677. Lin, H.-S., Lawrenz, F., Lin, S.-F., & Hong, Z.-R. (2013). Relationships among affective factors and preferred engagement in science-related activities. Public Understanding of Science, 22(8), 941 – 954. Liu, S.-C. (2011). What is the thing we call heat? A study on diverse representations of the basic thermal concepts in and for school science. In M. M. H. Cheng, & W. W. M. So (Eds.),Science education in international contexts (pp. 17–28). Rotherdam: Sense Publishers. Longshaw, S. (2009). Creativity in science teaching. School Science Review, 90(332), 91 – 94. Marshall, J. C., Smart, J. B., & Alston, D. M. (2017). Inquiry-based instruction: A possible solution to improving student learning of both science concepts and scientific practices. International journal of science and mathematics education, 15(5), 777-796. Millar, R. (2010). Practical works. In J. Osborne & J. Dillon (Eds.), Good practice in science teaching. New York, NY: Open University Press. Moon, B. (1988). Introducing the Modular Curriculum to Teachers. Modular Curriculum. Mupira, P., & Ramnarain, U. (2018). TMupira, P., & Ramnarain, U. (2018). The effect of inquiry‐based learning on the achievement goal‐orientation of grade 10 physical sciences learners at township schools in South Africa. Journal of Research in Science Teaching, 55(6), 810-825. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC.: Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. NGSS Lead States. (2013). The next generation science standards: For states, by states. Washington, DC:National Academy of Sciences Press. Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25(2), 177-196. Pathare, S. R. & Pradhan, H. C. (2010). Students ’ misconceptions about heat transfer mechanisms and elementary kinetic theory. Physics Education, 45(5), 629 – 634. Pintrich, P. R. ,Smith, D. A. F. & McKeachie, W. J.(1989). A Manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ).Mich:National Center forResearch to Improve Postsecondary Teaching and Learning (NCRIPTAL).School of Education,TheUniversity Michigan.research and future directions. Adult Education , 28 (4), 253-260. Roca, M., Márquez, C., & Sanmartí, N. (2013). Las preguntas de los alumnos: Una propuesta de análisis. Enseñanza de las Ciencias, 31(1), 95 – 114. Rolland, R. G. (2012). Synthesizing the evidence on classroom goal structures in middle and secondary schools: A meta-analysis and narrative review. Review of Educational Research, 82(4), 396-435. Salmerón, L. (2013). Actividades que promueven la transferencia de los aprendizajes: una revisión de la literatura. Revista de Educación, No. Extra, 34 – 53. Sanmartí, N., & Márquez, C. (2012). Enseñar a plantear preguntas investigables. Alambique, 70, 27 – 36. Schnittka, C., & Bell, R. (2011). Engineering design and conceptual change in science: Addressing thermal energy and heat transfer in eighth grade. International Journal of Science Education, 33(13), 1861-1887. Tuan, H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to measure students' motivation towards science learning. International journal of science education, 27(6), 639-654. Tuan, H. L., Chin, C. C., Tsai, C. C., & Cheng, S. F. (2005). Investigating the effectiveness of inquiry instruction on the motivation of different learning styles students. International Journal of Science and Mathematics Education, 3(4), 541-566. Vygotsky, L. (1985). Pensamiento y Lenguaje. Buenos Aires: Pléyade. Warwick, D. (1987). The modular curriculum. Oxford: Basil Blackwell. Weiner, B. (Ed.). (1974). Cognitive views of human motivation. New York: Academic Press. Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation. Contemporary educational psychology, 25(1), 68-81. Wiser, M. & Amin, T. (2001). “ Is heat hot? ” inducing conceptual change by integrating everyday and scientific perspectives on thermal phenomena. Learning and Instruction, 11(4 – 5), 331 – 355. Wong, C. L., Chu, H. E., & Yap, K. C. (2016). Are alternative conceptions dependent on researchers’methodology and definition?: A review of empirical studies related to concepts of heat. International Journal of Science and Mathematics Education, 14(3), 499-526. Yeo, S. & Zadnik, M. (2001). Introductory thermal concept evaluation: assessing students ’ understanding. The Physics Teacher, 39(8), 496 – 504. Zheng, L., Dong, Y., Huang, R., Chang, C. Y., & Bhagat, K. K. (2018). Investigating the interrelationships among conceptions of, approaches to, and self-efficacy in learning science. International Journal of Science Education, 40(2), 139-158.
|