跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/07 19:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:康智凱
研究生(外文):Kang,Zhi-Kai
論文名稱:發展探究與實作教學模組對八年級學生學習動機與成效之影響-以溫度與熱單元為例
論文名稱(外文):Explore the Impact of Developmental Science Inquiry and Practice Teaching Module on Learning Motivation and Performance of Eighth Grade Students -A Case Study of Temperature and Heat Units
指導教授:林建隆林建隆引用關係
指導教授(外文):Lin, Jang-Long
口試委員:陳均伊鄭孟斐林建隆
口試委員(外文):Chen, Jun-YiCheng, Meng-FeiLin, Jang-Long
口試日期:2019-07-15
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:116
中文關鍵詞:探究與實作科學實作學習動機溫度與熱
外文關鍵詞:Inquiry and PracticeScientific PracticeLearning motivationTemperature and Heat
相關次數:
  • 被引用被引用:1
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:2
本研究採質性研究法,旨在發展溫度與熱單元探究與實作教學模組,探討對八年級學生的學習動機與學習成效影響。研究對象為臺灣中部某鄉鎮國中的一常態班級共28人。研究工具為科學學習動機問卷、溫度與熱成就測驗試卷。資料蒐集包括:科學學習動機問卷、溫度與熱單元成就測驗前、後測、學習單、課室錄影錄音、晤談資料與教師反思日誌。以質性資料分析為主,並輔以科學學習動機問卷描述性統計及成就測驗前、後測成對樣本t檢定量化資料分析,主要研究結果發現:
一、學習動機:在自我效能方面,教師藉由溫度與熱探究與實作教學模組教學,使學生經由探究與實作實驗的成功經驗,提升自我效能;在自主學習策略方面,當學生對溫度與熱概念有任何想法或未理解之處,能主動跟組內同學、老師進行詢問與溝通討論,達成有效學習;在科學學習價值方面,透過與日常生活結合的探究問題,讓學生解釋溫度與熱現象,並能實際應用於日常生活中;在成就目標方面,執行溫度與熱的實驗等實作過程,透由教師給予正向的回饋,能夠提升學生的成就目標。在學習環境誘因方面,透過探究與實作,結合生活情境,能提升學生參與理化探究與實作課程,引發學生對溫度與熱的學習興趣。
二、學習成效:探究與實作教學模組讓學生經歷探究結合生活情境和溫度與熱的相關問題、執行探究實驗等科學實作活動,使學生能充分理解溫度與熱相關概念。而成就測驗前、後測之各命題類別與總測驗進行相依樣本t檢定結果,後測皆顯著高於前測,顯示透由本探究與實作教學模組教學,學生成效有所提升。
This study was designed by a qualitative method to explore how the motivation and learning outcomes of eighth-grade students were influenced by the teaching modules of temperature and heat unit which researcher developed. A total of 28 students from a normal class of a junior high school located in a township in central Taiwan participated in the study. The research tools are students’ motivation toward science learning questionnaire (SMTSL) and pre- and post- achievement tests in temperature and heat. As for data collection, it includes pre- and post- achievement tests in temperature and heat, students’ worksheets, audio and videos of the lectures, tudent interview information, and teaching journals. Primarily performing qualitative analysis, supplemented by quantitative analysis of the descriptive statistics of SMTSL and paired sample t-test in pre- and post- tests, the results of the study are as follows:
1. Motivation: In terms of self-efficacy, teachers use a series of experiments on temperature and heat to enable students to improve their self-efficacy through successful experiments. In terms of active learning strategy, students can take the initiative to ask questions and communicate with other students and teachers to understand the concepts of temperature and heat; in terms of science learning value, the teachers use the problems of daily life to allow students to explan the phenomena of temperature and heat and apply them to daily life; In terms of performance goal and achievement goal, the implementation of temperature and heat experiments and positive feedback from teachers can enhance students' achievement goals. In terms of learning environment stimulation, through inquiry and practice combined with life situations, students can participate in science courses, and stimulate students' interests in temperature and heat.
2. Achievement: The teaching modules allow students to experience the combination of daily life and issues of temperature and heat, construct interpretation of life phenomena, perform inquiry experiments. Through the teaching modules enables students to understand the concept of temperature and heat. The results of the t-test before and after the achievement test, and the types of propositions and the total post-test are significantly higher than the pre-test.
中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
表次 vi
圖次 vii
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與待答問題 2
第三節 名詞解釋 2
第四節 研究範圍與限制 3
第貳章 文獻探討 5
第一節 探究與實作 5
第二節 學習動機 15
第三節 溫度與熱之相關研究 21
第參章 研究方法 29
第一節 研究者的背景與理念 29
第二節 研究情境與研究對象 29
第三節 教學設計 30
第四節 研究工具 36
第五節 研究流程 39
第六節 資料收集與分析 42
第肆章 研究結果 45
第一節 探究與實作教學模組對於八年級學生學習動機之影響 45
第二節 探究與實作教學模組對八年級學生的溫度與熱概念學習成效 53
第伍章 結論與建議 63
第一節 結論 63
第二節 建議 65
參考文獻 67
一、中文部分 67
二、外文部分 69
附錄一 探究與實作教學模組之溫度與熱教案 78
附錄二 探究與實作教學模組之溫度與熱學習單 90
附錄三 溫度與熱單元成就測驗 113
附錄四 晤談大綱 116
一、中文部分:
王慧明、林啟超(2016)。合作學習對國中生學習理化學習動機與學習表現之影響。東海教育評論,12,37-68。
林生傳(2007)。教育心理學。台北市:五南出版社。
林坤誼(2014)。STEM 科際整合教育培養整合理論與實務的科技人才。科技與人力教育季刊,1(1),2-17。
林建平(2003)。學習動機的認知理論及其在教育上的應用。國教新知,49(3),17-27。
林建隆、徐順益(2007)。國中自然與生活科技教師發展 5E 探究式光學單元教學模組之研究。物理教育學刊,8(1),1-16。
林煥祥、洪振方、佘曉清、李松濤、李暉、秦爾聰(2016)。PISA 2015。發表於第三十二屆科學教育國際研討會。臺中市:中華民國科學教育學會。
林寶山(1990)。教學論-理論與方法。台北市:五南出版社。
邱美虹(2016)。科學模型與建模:科學素養中的模型認知與建模能力。臺灣化學教育,11。查詢日期:106 年 8 月 21 日,檢自
http://chemed.chemistry.org.tw/?p=14186。
張文哲(譯)(2013)。教育心理學-理論與實際(原作者:Robert E.Slavin)。台北市:學富文化。
張春興(2007)。教育心理學-三化取向的理論與實踐 重修二版。台北市:東華。
張英琦、林建隆、鄭孟斐、張誌原(2017)。多面向概念改變架構融入 5E 探究式教學策略對概念改變成效的探討-以轉動與力矩單元為例。師資培育與教師專業發展期刊,10(3),87-117.
張珮珊、賴吉永、溫媺純(2017)。科學探究與實作課程的發展,實施與評量: 以實驗室中的科學論證為核心之研究。科學教育學刊,25(4),355-389。
陳文典、劉德生(1994)。國小學童對熱與溫度概念的認知。科學教育學刊,2(2),77-113。
陳家騏(2017)。探究與實作初探-以菜瓜布海綿的最大靜摩擦力測量為何。物理教育學刊,18(1),51-63。
陳家騏、古建國(2017)。STEM 教學應用於高中探究與實作課程之行動研究-以摩擦力為例。物理教育學刊,18(2),17-38。
楊秀停、王國華(2007)。實施引導式探究教學對於國小學童學習成效之影響。科學教育學刊,15(4),439-459。
葉炳煙(2013)。學習動機定義與相關理論之研究。屏東教大體育,(16),285-293。
劉湘瑤(2016)。科學探究的教學與評量。科學研習,55(2),5-11。
蔡錕承、張欣怡(2011)。結合實物與虛擬實驗促進八年級學生「溫度與熱」知識 整合,實驗能力與學習策略之研究。科學教育學刊,19(5),435-459。
鄭志鵬(2012)。具有區分性教學特性的科學探究課程設計─以熱學為例。中等教育,63(1),108-119。
謝秀月、郭重吉(1991)。小學、師院學生熱與溫度概念的另有架構。科學教育,(2),227-247。
蘇育男、徐順益(2009)。融入多面向架構之 5E 教學模式對八年級學生熱學概念改變與學習動機之研究。數理學科教學知能,1,45-63。

二、外文部分:
Acevedo-Díaz, J. A., García-Carmona, A. & Aragón, M. M. (2017). Enseñar y aprender sobre naturaleza de laciencia mediante el análisis de controversias de historia de la ciencia. Resultados y conclusiones de unproyecto de investigación didáctica. Madrid: Organización de Estados Iberoamericanos para la Educación, la Ciencia y la Cultura (OEI).
Adadan, E., & Yavuzkaya, M. N. (2018). Examining the progression and consistency of thermal concepts: a cross-age study. International Journal of Science Education, 40(4), 371-396.
Albert, E. (1978). Development of the concept of heat in children. Science Education, 62(3), 389 – 399.
Ames, C. A. (1990). Motivation: what teachers need to know?. Teachers College Record, 91, 409-421.
Arnold, J. C., Kremer, K., & Mayer, J. (2014). Understanding students ’ experiments — What kind of support do they need in inquiry tasks?. International Journal of Science Education, 36(16), 2719 – 2749.
Atkin, J. M. & Karplus, R. (1962). Discovery of invention?. Science Teacher, 29(5), 45.
Atkinson, J. W. (1964). An Introduction to Motivation. Princeton, NJ: Van Nostrand.
Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26 – 29.
Bandura, A. (1982). Self-efficacy mechanism in human agency. American psychologist, 37(2), 122.
Bathgate, M., & Schunn, C. (2017). The psychological characteristics of experiences that influence science motivation and content knowledge. International Journal of Science Education, 39(17), 2402-2432.
Bertsch, C., Kapelari, S., & Unterbruner, U. (2014). From cookbook experiments to inquiry based primary science: Influence of inquiry based lessons on interest and conceptual understanding. Inquiry in Primary Science Education, 1, 20-31.
Britner, S. L., & Pajares, F. (2006). Sources of science self‐efficacy beliefs of middle school students. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 43(5), 485-499.
Brophy, J. (2010). Motivating Students to Learn. 3rd Edition, Routledge, Abingdon-on-Thames.
Bunterm, T., Lee, K., Lan, J. N., Srikoon, S., Vangpoomyai, P., Rattanavongsa, J., & Rachahoon, G. (2014). Do different levels of inquiry lead to different learning outcomes? A comparison between guided and structured inquiry. International Journal of Science Education, 36(12), 1937 – 1959.
Bybee, R. W. (2014). The BSCS 5E instructional model: Personal reflections and contemporary implications. Science and Children, 51(8), 10-13.
Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, Co: BSCS, 5, 88-98.
Cañal, P., García-Carmona, A., & Cruz-Guzmán, M. (2016). Didáctica de las ciencias experimentales en educación primaria. Madrid: Paraninfo.
Chi, M. T. H. & Slotta, J. D. (1993). The ontological coherence of intuitive physics.Cognition and Instruction, 10(2 & 3), 249 – 260.
Chin, C., & Osborne, J. (2008). Students ’ questions: A potential resource for teaching and learning science. Studies in Science Education, 44(1), 1 – 39.
Chiou, G.-L. & Anderson, O. R. (2010). A multi-dimensional cognitive analysis of undergraduate physics students ’ understanding of heat conduction. International Journal of Science Education, 32(16), 2113 – 2142.
Chu, H. E., Treagust, D. F., Yeo, S., & Zadnik, M. (2012). Evaluation of students’ understanding of thermal concepts in everyday contexts. International Journal of Science Education, 34(10), 1509-1534.
Cruz-Guzmán, M., García-Carmona, A., & Criado, A. M. (2017). An analysis of the questions proposed by elementary pre-service teachers when designing experimental activities as inquiry. International Journal of Science Education, 39(13), 1755 – 1774.
Elliot, A. J., & McGregor, H. A. (2001). A 2× 2 achievement goal framework. Journal of personality and social psychology, 80(3), 501.
Erickson, G.L. (1979). Children’s conceptions of heat and temperature. Science Education, 63(2),221–230.
García-Carmona, A. (2012). “¿Qué he comprendido? ¿qué sigo sin entender?”. Promoviendo la auto-reflexión en clase de ciencias. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 9(2), 231 – 240.
García-Carmona, A., & Acevedo, J. A. (2016). Learning about the nature of science using newspaper articles with scientific content: A study in initial primary teacher education. Science & Education, 25(5 – 6), 523 – 546.
García-Carmona, A., & Acevedo-Díaz, J. A. (2018). The Nature of Scientific Practice and Science Education. Science & Education, 27(5-6), 435-455.
García-Carmona, A., Criado, A. M., & Cruz-Guzmán, M. (2017). Primary pre-service teachers ’ skills in planning a guided scientific inquiry. Research in Science Education, 47(5), 989 – 1010.
García-Carmona, A., Criado, A. M., & Cruz-Guzmán, M. (2018). Prospective primary teachers ’ prior experiences, conceptions, and pedagogical valuations of experimental activities in science education. International Journal of Science and Mathematics Education, 16(2), 237 – 253.
Georgiou, H. & Sharma, M. D. (2012). University students ’ understanding of thermal physics in everyday contexts. International Journal of Science and Mathematics Education, 10(5), 1119 – 1142.
Goldston, M. J., Dantzler, J., Day, J., & Webb, B. (2013). A psychometric approach to the development of a 5E lesson plan scoring instrument for inquiry-based teaching. Journal of Science Teacher Education, 24(3), 527-551.
Graesser, A. C., Ozuru, Y., & Sullins, J. (2010). What is a good question? In M. G. McKeown & L. Kucan (Eds.), Bringing reading research to life (pp. 112 – 141). New York, NY: The Guildford Press.
Harlen, W. (2013). Assessment & inquiry-based science education: Issues in policy and practice. Trieste: IAP.
Harrison, A. G., Grayson, D. J., & Treagust, D. F. (1999). Investigating a grade 11 student’s evolving conceptions of heat and temperature. Journal of Research in Science Teaching, 36(1), 55–87.
Hayes, D. (2009). Encyclopedia of primary education. New York, NY: Routledge.
Hewson, M. G. & Hamlyn, D. (1984). The influence of intellectual environment on conceptions of heat. European Journal of Science Education, 6(4), 254 – 262.
Hodson, D. (2005). Teaching and learning chemistry in the laboratory: A critical look at the research. Educación Química, 16(1), 30 – 38.
Hofstein, A., & Mamlok-Naaman, R. (2007). The laboratory in science education: the state of the art. Chemistry education research and practice, 8(2), 105-107.
Howes, E. V., Lim, M., & Campos, J. (2009). Journeys into inquiry‐based elementary science: Literacy practices, questioning, and empirical study. Science Education, 93(2), 189-217.
Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75 – 86.
Klucevsek, K. M., & Brungard, A. B. (2016). Information literacy in science writing: How students find, identify,and use scientific literature. International Journal of Science Education, 38(17), 2573 – 2595.
Koksal, E. A., & Berberoglu, G. (2014). The effect of guided-inquiry instruction on 6th grade Turkish students ’ achievement, science process skills and attitudes toward science. International Journal of Science Education, 36(1), 66 – 78.
Kuo, Y. R., Tuan, H. L., & Chin, C. C. (2018). The influence of inquiry-based teaching on male and female students’ motivation and engagement. Research in Science Education. https://doi.org/10.1007/s11165-018-9701-3.
Lee, C. S., Hayes, K. N., Seitz, J., DiStefano, R., & O'Connor, D. (2016). Understanding motivational structures that differentially predict engagement and achievement in middle school science. International Journal of Science Education, 38(2), 192 – 215.
Lewis, E. L., & Linn, M. C. (1994). Heat energy and temperature concepts of adolescents, adults, and experts: Implications for curricular improvements. Journal of Research in Science Teaching, 31(6), 657-677.
Lin, H.-S., Lawrenz, F., Lin, S.-F., & Hong, Z.-R. (2013). Relationships among affective factors and preferred engagement in science-related activities. Public Understanding of Science, 22(8), 941 – 954.
Liu, S.-C. (2011). What is the thing we call heat? A study on diverse representations of the basic thermal concepts in and for school science. In M. M. H. Cheng, & W. W. M. So (Eds.),Science education in international contexts (pp. 17–28). Rotherdam: Sense Publishers.
Longshaw, S. (2009). Creativity in science teaching. School Science Review, 90(332), 91 – 94.
Marshall, J. C., Smart, J. B., & Alston, D. M. (2017). Inquiry-based instruction: A possible solution to improving student learning of both science concepts and scientific practices. International journal of science and mathematics education, 15(5), 777-796.
Millar, R. (2010). Practical works. In J. Osborne & J. Dillon (Eds.), Good practice in science teaching. New York, NY: Open University Press.
Moon, B. (1988). Introducing the Modular Curriculum to Teachers. Modular Curriculum.
Mupira, P., & Ramnarain, U. (2018). TMupira, P., & Ramnarain, U. (2018). The effect of inquiry‐based learning on the achievement goal‐orientation of grade 10 physical sciences learners at township schools in South Africa. Journal of Research in Science Teaching, 55(6), 810-825.
National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC.: Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education.
NGSS Lead States. (2013). The next generation science standards: For states, by states. Washington, DC:National Academy of Sciences Press.
Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25(2), 177-196.
Pathare, S. R. & Pradhan, H. C. (2010). Students ’ misconceptions about heat transfer mechanisms and elementary kinetic theory. Physics Education, 45(5), 629 – 634.
Pintrich, P. R. ,Smith, D. A. F. & McKeachie, W. J.(1989). A Manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ).Mich:National Center forResearch to Improve Postsecondary Teaching and Learning (NCRIPTAL).School of Education,TheUniversity Michigan.research and future directions. Adult Education , 28 (4), 253-260.
Roca, M., Márquez, C., & Sanmartí, N. (2013). Las preguntas de los alumnos: Una propuesta de análisis. Enseñanza de las Ciencias, 31(1), 95 – 114.
Rolland, R. G. (2012). Synthesizing the evidence on classroom goal structures in middle and secondary schools: A meta-analysis and narrative review. Review of Educational Research, 82(4), 396-435.
Salmerón, L. (2013). Actividades que promueven la transferencia de los aprendizajes: una revisión de la literatura. Revista de Educación, No. Extra, 34 – 53.
Sanmartí, N., & Márquez, C. (2012). Enseñar a plantear preguntas investigables. Alambique, 70, 27 – 36.
Schnittka, C., & Bell, R. (2011). Engineering design and conceptual change in science: Addressing thermal energy and heat transfer in eighth grade. International Journal of Science Education, 33(13), 1861-1887.
Tuan, H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to measure students' motivation towards science learning. International journal of science education, 27(6), 639-654.
Tuan, H. L., Chin, C. C., Tsai, C. C., & Cheng, S. F. (2005). Investigating the effectiveness of inquiry instruction on the motivation of different learning styles students. International Journal of Science and Mathematics Education, 3(4), 541-566.
Vygotsky, L. (1985). Pensamiento y Lenguaje. Buenos Aires: Pléyade.
Warwick, D. (1987). The modular curriculum. Oxford: Basil Blackwell.
Weiner, B. (Ed.). (1974). Cognitive views of human motivation. New York: Academic Press.
Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation. Contemporary educational psychology, 25(1), 68-81.
Wiser, M. & Amin, T. (2001). “ Is heat hot? ” inducing conceptual change by integrating everyday and scientific perspectives on thermal phenomena. Learning and Instruction, 11(4 – 5), 331 – 355.
Wong, C. L., Chu, H. E., & Yap, K. C. (2016). Are alternative conceptions dependent on researchers’methodology and definition?: A review of empirical studies related to concepts of heat. International Journal of Science and Mathematics Education, 14(3), 499-526.
Yeo, S. & Zadnik, M. (2001). Introductory thermal concept evaluation: assessing students ’ understanding. The Physics Teacher, 39(8), 496 – 504.
Zheng, L., Dong, Y., Huang, R., Chang, C. Y., & Bhagat, K. K. (2018). Investigating the interrelationships among conceptions of, approaches to, and self-efficacy in learning science. International Journal of Science Education, 40(2), 139-158.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top