跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/18 18:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖啟盛
論文名稱:電量感知多台UAV派遣與換手演算法
論文名稱(外文):Energy-Aware Multi-UAV Dispatch and Handoff Algorithm
指導教授:張英超張英超引用關係
口試委員:呂瑞麟楊政穎張英超
口試日期:2019-04-12
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:102
中文關鍵詞:災難事件無人機無人機網路行動地面控制站電力感知多台無人機派遣與換手演算法
外文關鍵詞:Disaster EventUnmanned Aerial Vehicle (UAV)Flying Ad hoc Network (FANET)Mobile Ground Control StationEnergy-Aware Multi-UAV Dispatch and Handoff Algorithm
相關次數:
  • 被引用被引用:1
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了解決因災難發生後導致通訊的基礎設施被破壞無法繼續運作,本論文利用多軸無人機在空中不受建築物或是障礙物導致通訊遮蔽以及可在空中盤旋的優勢,派遣多台無人機至災難事件發生地點作為中繼節點,進一步形成無人機網路,恢復災難地區的通訊。由於一個災難事件範圍廣泛,可能同時需要多台無人機且無人機的電量資源有限,因此必須透過有效的無人機派遣與換手方式使整個事件的無人機鏈結通訊時間盡可能的最大化。本論文將利用行動地面控制站將多台無人機載運至災難地區附近,接著行動地面控制站使用本論文提出的『電力感知多台無人機派遣演算法』計算,考慮無人機飛行與通訊的電量消耗、所有無人機的充電與使用狀態與整個事件的無人機數量需求,同時派遣多台無人機到災難現場建立無人機網路,串連災難現場附近原有的基礎設施網路後形成兩層式的網路,解決通訊中斷的問題。此外為了達成事件鏈結通訊時間最大化的目的,本論文進一步提出『多台無人機換手策略與例外處理』,替換電力耗盡的無人機。
For handling the broken-down communication infrastructure when a disaster event happens, this thesis proposes to dispatch the unmanned aerial vehicle (UAV) to the disaster area as the relay node, which further forms a Flying Ad hoc Network (FANET). Because the UAV only owns limited energy and a disaster event may need multiple UAVs to cover its area, an efficient multi-UAV dispatch algorithm is critical to recover the communication link of the disaster area. In this thesis, we adopt the mobile ground control station (GCS) to transport UAVs to the boundary of the disaster area first. According to the UAV energy consumption rate during fly and two communication modes, the UAV charging progress and the number of required UAVs of the event, the mobile GCS then executes the proposed Energy-Aware Multi-UAV Dispatch algorithm (EAMUD) to dispatch multiple UAVs to this disaster area for building the FANET. Hence, the broken-down link in the disaster area is recovered after the FANET connects to nearby network infrastructure. Finally, we propose the multi-UAV handoff scheme and exception handling processes to replace energy-exhausted UAVs for maximizing the link communication time of the disaster event.
中文摘要.................................................................I
英文摘要................................................................II
誌謝...................................................................III
目錄....................................................................IV
圖目錄...................................................................V
表目錄.................................................................VII
第一章 緒論.............................................................1
1.1 研究背景與動機.......................................................1
第二章 文獻探討.........................................................7
2.1 UAV通訊及飛行功率計算............................................7
2.2 UAV派遣及換手方法 ........................................10
第三章 災難時最大化鏈結通訊時間的電力感知多台無人機派遣與換手演算法....17
3.1網路環境及UAV功能介紹................................................18
3.2 UAV電池電量計算公式................................................20
3.3 GCS的Event Queue及UAV Pool結構 ................................25
3.4 EAUD UAV派遣與換手演算法及兩種例外處理機制..........................29
3.4.1 兩種例外處理......................................................44
3.5同時考慮同一事件所有子事件的電量感知多台UAV派遣與換手演算法EAMUD.....47
3.6 線性規劃限制式......................................................63
第四章 實驗效能及分析..................................................65
4.1 實驗環境介紹........................................................65
4.2 比較之派遣演算法、實驗變數與效能項目................................66
4.3 事件已知線性最佳解的模擬數據比較....................................68
4.3.1 UAV數量對各種metric之影響........................................69
4.3.2 事件數量比例對各種metric之影響...................................70
4.3.3 電池容量對各種metric之影響.......................................72
4.3.4 充電速度對各種metric之影響.......................................73
4.4 即時事件的UAV派遣模擬數據比較.......................................74
4.4.1 UAV派遣門檻值對各種metric之影響..................................75
4.4.2 UAV數量對各種metric之影響........................................81
4.4.3 事件數量比例對各種metric之影響...................................86
4.4.4 電池容量對各種metric之影響.......................................89
4.4.5 充電速度對各種metric之影響.......................................94
4.5 實驗討論............................................................98
第五章 結論............................................................99
參考文獻...............................................................101
[1] Ozgur Koray Sahingoz, “Networking Models in Flying Ad-Hoc Networks (FANETs): Concepts and Challenges,” Journal of Intelligent and Robotic Systems, Vol.74, Issue 1-2, pp. 513-527, April 2014.
[2] H. Menouar, I. Guvenc, K. Akkaya, A. Selcuk Uluagac, A. Kadri ; A. Tuncer, “UAV-Enabled Intelligent Transportation Systems for the Smart City: Applications and Challenges,” IEEE Communications Magazine, Vol. 55, Issue 3, pp. 22-28, March 2017.
[3] H. Aasen, “UAV Spectroscopy: Current Sensors, Processing Techniques and Theoretical Concepts for Data Interpretation,” IEEE International Geoscience and Remote Sensing Symposium, pp. 8809-8812, 2018.
[4] D. Rosner, C. Trifu, C. Tranca, I. Vasilescu, Florin Stancu, “Magnetic Field Sensor for UAV Power Line Acquisition and Tracking,” 17th RoEduNet Conference: Networking in Education and Research, pp. 1-5, 2018.
[5] H. Zhao, H. Wang, W. Wu, J. Wei, “Deployment Algorithms for UAV Airborne Networks Toward On-Demand Coverage,” IEEE Journal on Selected Areas in Communications, Vol. 36, Issue 9, pp. 2015-2031, 2018.
[6] V. Sharma, K. Srinivasan, Han-Chieh Chao, Kai-Lung Hua, Wen-Huang Cheng, “Intelligent Deployment of UAVs in 5G Heterogeneous Communication Evironment for Improved Coverage,” Journal of Network and Computer Applications, Vol. 85, pp. 94-105, 2017.
[7] Kashif Naseer Qureshi, Abdul Hanan Abdullah, Jaime Lloret and Ayman Altameem, “Road-Aware Routing Strategies for Vehicular Ad Hoc Networks: Characteristics and Comparisons,” International Journal of Distributed Sensor Networks, Vol. 16, pp. 1-19, 2016.
[8] Rejab Hajlaoui, Hervé Guyennet amd Tarek Moulahi, “A Survey on Heuristic-Based Routing Methods in Vehicular Ad-Hoc Network: Technical Challenges and Future Trends,” IEEE Sensors Journal, Vol. 16, pp. 6782-6792, 2016.
[9] Yi Zhou, Nan Cheng and Ning Lu, “Multi-UAV-aided Networks: Aerial-Ground Cooperative Vehicular Networking Architecture,” IEEE Vehicular Technology Magazine, Vol.10, Issue 4, pp. 36-44, Dec. 2015.
[10] Xiong Wang, Luoyi Fu, Yang Zhang, Xiaoying Gan and Xinbing Wang, “VDNet: an Infrastructure-less UAV-assisted Sparse VANET System with Vehicle Location Prediction,” Wireless Communications and Mobile Computing, Vol.16, pp. 2991-3003, 2016.
[11] Omar Sami Oubbati, Abderrahmane Lakas and Nasreddine Lagraa, “CRUV: Connectivity-based Traffic Density Aware Routing Using UAV for VANETs,” International Conference on Connected Vehicles and Expo (ICCVE), pp. 68-73, 2015.
[12] Omar Sami Oubbati, Abderrahmane Lakas and Nasreddine Lagraa, “UVAR: An Intersection UAV-assisted VANET Routing Protocol,” IEEE Wireless Communications and Networking Conference, pp. 1-6, 2016.
[13] J. Yim, H. Park, E. Kwon, S. Kim, Yong-Tae Lee, “Low-power Image Stitching Management for Reducing Power Consumption of UAVs for Disaster Management System,” IEEE International Conference on Consumer Electronics, pp. 1-3, 2018.
[14] Carlos Alphonso F. Ezequiel, M. Cua, Nathaniel C. Libatique, Gregory L. Tangonan, R.Alampay, Rollyn T. Labuguen, Chrisandro M. Favila, Jaime Luis E. Honrado, Vinni Canos, C. Devaney, Alan B. Loreto, J. Bacusmo, B. Palma, “UAV Aerial Imaging Applications for Post-Disaster Assessment, Environmental Management and Infrastructure Development,” International Conference on Unmanned Aircraft Systems, pp. 274-283, 2014.
[15] Catur Aries Rokhmana, R. Andaru, “Utilizing UAV-based Mapping in Post Disaster Volcano Eruption,” International Annual Engineering Seminar, pp.202-205, 2016.
[16] M. Erdelj, Enrico Natalizio, “UAV-assisted Disaster Management: Applications and Open Issues,” International Conference on Computing, Networking and Communications, pp.1-5, 2016.
[17] S. Hayat, E. Yanmaz, R. Muzaffar, “Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint,” IEEE Communications Surveys and Tutorials, Vol. 18, Issue 4, pp. 2624-2661, 2016.
[18] Dahee Jeong, So-Yeon Park, HyungJune Lee, “DroneNet: Network Reconstruction through Sparse Connectivity Probing using Distributed UAVs,” IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, pp.1797-1802, 2015.
[19] Milan Erdelj, Enrico Natalizio, Kaushik R. Chowdhury, “Help from the Sky: Leveraging UAVs for Disaster Management,” IEEE Pervasive Computing, Vol. 16, Issue 1, pp. 24-32, 2017.
[20] H. Ghazzai, A. Kadri, Mahdi Ben Ghorbel, Hamid Menouar, “Optimal Sequential and Parallel UAV Scheduling for Multi-Event Applications,” IEEE 87th Vehicular Technology Conference, pp. 1-6, 2018.
[21] M. Erdelj, M. Król, E. Natalizio, “Wireless Sensor Networks and Multi-UAV Systems for Natural Disaster Management,” Computer Networks, Vol. 124, pp. 72-86, 2017.
[22] M. Erdelj, O. Saif, E. Natalizio, I. Fantoni, “UAVs that Fly Forever: Uninterrupted Structural Inspection through Automatic UAV Replacement,” Ad Hoc Networks, pp. 1-13, 2017.
[23] T. Dietrich, O. Andryeyev, A. Zimmermann, A. Mitschele-Thiel, “Towards a Unified Decentralized Swarm Management and Maintenance Coordination Based on MAVLink,” International Conference on Autonomous Robot Systems and Competitions, pp. 124-129, 2016.
[24] N. Hossein Motlagh, M. Bagaa and T. Taleb, “UAV Selection for a UAV-based Integrative IoT Platform,” IEEE Global Communications Conference (GLOBECOM), pp. 1-6, 2016.
[25] Jacob Palmer, Nicholas Yuen and John-Paul Ore, “On Air-to-Water Radio Communication between UAVs and Water Sensor Networks,” IEEE International Conference on Robotics and Automation (ICRA), pp. 5311-5317, 2015.
[26] Shucong Jia and Lin Zhang, “Modelling Unmanned Aerial Vehicles Base Station in Ground-to-Air Cooperative Networks,” IET Communications Vol. 11, Issue 8, pp. 1187-1194, 2017.
[27] Thiago Rodrigo Felix Cavalcante, Iury Valente de Bessa, Lucas Carvalho Cordeiro “Planning and Evaluation of UAV Mission Planner for Intralogistics Problems,” Brazilian Symposium on Computing Systems Engineering (SBESC), pp.9-16, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top