跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 19:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王柏凱
研究生(外文):Wang, Po-Kai
論文名稱:應用於基地台的電磁偶極場型可重置陣列天線
論文名稱(外文):Designs of Pattern Reconfigurable Magneto-electric Dipole Array for Base Station Applications
指導教授:羅鈞壎
指導教授(外文):Row, Jeen-Sheen
口試委員:蔡佳甫林昭志羅鈞壎
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:77
中文關鍵詞:寬頻場型可重置機械式場型可重置波束寬可重置波束切換
外文關鍵詞:widebandpattern reconfigurablemechanically pattern reconfigurablebeamwidth reconfigurablebeam steering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出兩種場型可重置陣列天線,兩種陣列皆採用放置於金屬盒之印刷電偶極天線作為輻射元素,其具有寬的阻抗頻寬及高前後比的特性。第一種陣列將四個元素放置於可彎折之關節上,當手動旋轉關節時會使陣列結構改變,而每種結構會產生特定的輻射場型,本篇提出之天線設計頻段應用於5 GHz Wi-Fi頻段,根據量測結果,天線具有三種較典型的輻射場型,包含高指向性輻射場型、雙波束輻射場型及全向性輻射場型。
第二種設計是將包含四個輻射元素的扇形陣列作為子陣列,並由四個獨立的子陣列所構成,為了得到需要的輻射場型,將四個子陣列以依序旋轉的方式擺放,藉由控制激發元素的數量,此陣列在頻段3.3-4 GHz內能提供掃描波束及全向性輻射場型,此外,掃描的波束分別具有三種不同的半功率波束寬,而關於此陣列模擬與實測結果將於論文內提出。
Two pattern reconfigurable antenna arrays are proposed in this thesis. The radiating element of the two arrays is a printed dipole backed with a metallic box, and it has a broad impedance bandwidth as well as a high front-to-back ratio. For the first array, four of the elements are connected together by using a mounting fixture with rotatable joints. When the joints are rotated manually, the array configuration is changed, and each array configuration can generate a specific radiation pattern. A prototype designed at the 5 GHz WiFi band is constructed. Measured results for the prototype operating in three typical radiation modes are shown, including high directive radiation mode, two-beam radiation mode, and omnidirectional radiation mode.
For the second array, it is composed of four identical subarrays, and each subarray is a compact sector array with four radiating elements. To obtain the required radiation patterns, the four subarrays are stacked in a sequential-rotation fashion. By controlling the number of the elements are excited, the array can provide scanned beams and an omnidirectional pattern in the frequency band from 3.3 to 4 GHz; besides, the scanned beams with three different half-power beamwidths can be obtained. Both measured and simulated results are also provided in the thesis.
目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1概述 1
1.2文獻探討 4
1.3內容摘要 7
第二章 機械式場型可重置天線 8
2.1 概述 8
2.2 天線結構 9
2.3模擬之參數分析 17
2.4天線模擬結果 20
2.5天線實驗結果 26
2.6結論 32




第三章 電子式場型可重置天線 33
3.1 概述 33
3.2 天線結構 35
3.3單一元素模擬與實驗結果 39
3.4天線模式介紹 44
3.5天線模擬結果 47
3.6電路實測結果 55
3.7天線實驗結果 59
3.8 結論 71
第四章 結論 72
參考文獻 73
參考文獻
[1] D. Rodrigo, L. Jofre, and B. A. Cetiner, “Circular beam-steering reconfigurable antenna with liquid metal parasitics,” IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 1796–1802, Apr. 2012.
[2] X. Bai, M. Su, Y. Liu, Y. Wu “Wideband Pattern-Reconfigurable Cone Antenna Employing Liquid-Metal Reflectors,” IEEE Antennas Wireless Propag. Lett., vol. 17, pp. 916–919,2018.
[3] A. M. Morishita, C. K. Y. Kitamura, A. T. Ohta, and W. A. Shiroma,“A liquid-metal monopole array with tunable frequency, gain, and beam steering,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 1388–1391,2013.
[4] H. Zhu, S. Cheung, and T. Yuk, “Mechanically pattern reconfigurable antenna using metasurface,” Microw., Antennas Propag., vol. 9, no. 12,pp. 1331–1336, Sep. 17, 2015.
[5] C. Murray and R. Franklin, “Independently tunable annular slot antenna resonant frequencies using fluids,” IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 1449–1452, 2014.
[6] A. Jouade, M. Himdi, A. Chauloux, and F. Colombel, “Mechanically pattern-reconfigurable bended horn antenna for high-power applications,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 457–460,2017.
[7] P. Sanchez-Olivares and J. L. Masa-Campos, “Mechanically reconfigurable conformal array antenna fed by radial waveguide divider with tuning screws,” IEEE Trans. Antennas Propag., vol. 65, no. 9, pp. 4886–4890,Sep. 2017.

[8] V. Semkin et al., “Beam switching conformal antenna array for mm-wave communications,” IEEE Antennas Wireless Propag. Lett.,vol. 15, pp. 28–31, 2015.
[9] Y. Jian Cheng et al., “Millimeter-wave shaped-beam substrate integrated conformal array antenna,” IEEE Trans. Antennas Propag., vol.61, no. 9, pp. 4558–4566, Sep. 2013.
[10] Y. Liu, H. Yang, Z. Jin, F. Zhao, and J. Zhu, “A multibeam cylindrically conformal slot array antenna based on a modified Rotman lens,” IEEE Trans. Antennas Propag., vol. 66, no. 7, pp. 3441–3452, Jul. 2018.
[11] J. Cha, Y. Kuga, A. Ishimaru, and S. Lee, “A 20 GHz steerable array antenna using 3-bit dielectric slab phase shifters on a coplanar waveguide,” IEEE Trans. Antennas Propag., vol. 55, no. 2, pp. 290–297,Feb. 2007.
[12] P.S. Olivares, J.L. Masa-Campos, A.T. Muriel-Barrado, R. Villena-Medina, G.M. Fernandez-Romero, “Mechanically Reconfigurable Linear Array Antenna Fed by a Tunable Corporate Waveguide Network With Tuning Screws,” IEEE Antennas Wireless Propag. Lett.,vol. 17, pp. 1430–1434, 2018.
[13] Y. Yao, F. Zhang, and F. Zhang, “A new approach to design circularly polarized beam-steering antenna arrays without phase shift circuits,” IEEE Trans. Antennas Propag., vol. 66, no. 5, pp. 2354–2364, May 2018.
[14] M. Euler and V. F. Fusco, “Frequency selective surface using nested split ring slot elements as a lens with mechanically reconfigurable beam steering capability,” IEEE Trans. Antennas Propag., vol. 58, no. 10,pp. 3417–3421, Oct. 2010.

[15] X. Yang et al., “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antennas Propag., vol. 65, no. 8, pp. 3959–3966, Aug. 2017.
[16] Z. Shi et al., “A novel pattern-reconfigurable antenna using switched printed elements,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp.1100–1103, 2012.
[17] M. S. Alam and A. Abbosh, “Wideband pattern-reconfigurable antenna using pair of radial radiators on truncated ground with switchable director and reflector,” IEEE Antennas Wireless Propag. Lett., vol. 16,pp. 24–28, 2017.
[18] J. Ji, “Compact dual-band pattern reconfigurable antenna using switched parasitic array,” Electron. Lett., vol. 53, no. 4, pp. 211–212, Feb. 2017.
[19] Md. A. Towfiq, I. Bahceci, S. Blanch, J. Romeu, L. Jofre, and B. A.Cetiner, “A reconfigurable antenna with beam steering and beamwidth variability for wireless communications,” IEEE Trans. Antennas Propag.,vol. 66, no. 10, pp. 5052–5063, Oct. 2018
[20] Y.-F. Cheng, X. Ding, B.-Z. Wang, and W. Shao, “An azimuthpattern-reconfigurable antenna with enhanced gain and front-to-back ratio,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2303–2306,2017
[21] S. L. Chen, P. Y. Qin, W. Lin, and Y. J. Guo, “Pattern-reconfigurable antenna with five switchable beams in elevation plane,” IEEE Antennas Wireless Propag. Lett., vol. 17, pp. 454–457, 2018.
[22] F. Farzami, S. Khaledian, B. Smida, and D. Erricolo, “Patternreconfigurable printed dipole antenna using loaded parasitic elements,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1151–1154,2017


[23] G. Yang, J. Li, D. Wei, S. Zhou, R. Xu, “Pattern Reconfigurable Microstrip Antenna With Multidirectional Beam for Wireless Communication,” IEEE Trans. Antennas Propag.,vol. 67, pp. 1910–1915, March. 2019
[24] Y. Shi, Y. Cai, J. Yang, L. Li, “A Magnetoelectric Dipole Antenna With Beamwidth Reconfiguration,” IEEE Antennas Wireless Propag. Lett., vol. 18, pp. 621–625, 2019
[25] W. Ouyang, X. Gong, “An Electronically Steerable Parasitic Array Radiator (ESPAR) Using Cavity-Backed Slot Antennas,” IEEE Antennas Wireless Propag. Lett., vol. 18, pp. 757–761, 2019
[26] L. Ge and K. M. Luk, “Linearly polarized and dual-polarized magnetoelectric dipole antennas with reconfigurable beamwidth in the H-plane,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 423–431, Feb. 2006.
[27] G. Jin, M. Li, D. Liu, and G. Zeng, “A simple planar pattern reconfigurable antenna based on arc dipoles,” IEEE Antennas Wireless Propag. Lett.,vol. 17, no. 9, pp. 1664–1668, Sep. 2018.
[28] J.-S. Row and C.-W. Tsai, “Pattern reconfigurable antenna array with circular polarization,” IEEE Trans. Antennas Propag., vol. 64, no. 4, pp. 1525–1530, Apr. 2016.
[29] S.-J. Shi and W.-P. Ding, “Radiation pattern reconfigurable microstrip antenna for WiMAX application,” Electron. Lett., vol. 51, no. 9,pp. 662–664, Apr. 2015.
[30] J. Ouyang, Y.M. Pan, S.Y. Zheng, “Center-Fed Unilateral and Pattern Reconfigurable Planar Antennas With Slotted Ground Plane,” IEEE Trans. Antennas Propag., vol. 66, pp. 5139–5149, Oct. 2018.

[31] A. Pal, A. Mehta, D. Mirshekar-Syahkal, and H. Nakano, “A twelvebeam steering low-profile patch antenna with shorting vias for vehicular applications,” IEEE Trans. Antennas Propaga., vol. 65, no. 8, pp. 3905–3912, Aug. 2017.
[32] L. Ge and K. M. Luk, “A three-element linear magneto-electric dipole array with beamwidth reconfiguration,” IEEE Antennas Wireless Propag.Lett., vol. 14, pp. 28–31, 2015.
[33] R.J. Gong, Y.L. Ban. J.W Lian, Y. Liu, Z. Nie, “Circularly Polarized Multibeam Antenna Array of ME Dipole Fed by 5 × 6 Butler Matrix,” IEEE Antennas Wireless Propag. Lett.,vol. 18, pp. 712–716, 2019.
[34] T. Debogovic, J. Perruisseau-Carrier, and J. Bartolic, “Partially reflective surface antenna with dynamic beamwidth control,” IEEE Antennas. Wireless Propag. Lett., vol. 9, pp. 1157–1160, 2010.
[35] K. M. Luk and H. Wong, “A new wideband unidirectional antenna element,” Int. J. Microw. Opt. Technol., vol. 1, no. 1, pp. 35–44, Jun. 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top