跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/31 18:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范剛誌
研究生(外文):Fan,Kung-Chih
論文名稱:紅熒烯有機薄膜電晶體之研究
論文名稱(外文):The Investigation of Rubrene Organic Thin Film Transistor
指導教授:王右武
指導教授(外文):Wang,Yu-Wu
口試委員:蔡健益黃啟炎王右武
口試委員(外文):Tsay,Chien-YieHuang,Chi-YenWang,Yu-Wu
口試日期:2018-12-25
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:光電科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:116
中文關鍵詞:紅熒烯電晶體退火
外文關鍵詞:Rubrenetransistoranneal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是探討利用有機小分子聚合物-紅熒烯(Rubrene)製作成p型有機薄膜電晶體,由於紅熒烯薄膜利用蒸鍍法後呈現非晶型態,需要給予一些能量來驅使紅熒烯薄膜產生結晶相,所以本論文藉由在氮氣環境下利用四階段退火的方式,來藉此成功製作出紅熒烯薄膜電晶體元件。
第一部分主要是找出了多四階段退火的方式,成功製作出穩定的紅熒烯薄膜電晶體元件,並且利用了AFM觀察出退火前後之薄膜表面差異,發現第四階段退火完之紅熒烯薄膜表面有較大的形貌改變,而後嘗試退火溫度以及Buffer layer的改變,並量測其電流-電壓特性,計算出載子遷移率(μ)、On/Off ratio比、臨界電壓(VTH)以及次臨界斜率(S.S.)之電性參數值。
第二部分則是探討溫度效應對於紅熒烯薄膜電晶體之影響,由實驗可得知當環境溫度越高時,紅熒烯薄膜電晶體元件電流明顯提升,這部分可以利用陷阱束縛能解釋,當溫度提高時,陷阱束縛能變小,所以載子能更容易通過,故載子遷移率也跟著提升。
This thesis mainly discusses the use of organic small molecule polymer-rubrene to make p-type organic thin film transistor. Since the rubrene film is amorphous after evaporation, it needs to give some energy to let it be crystallization. The fluorene film produces a crystalline phase, so this paper successfully produced a rubrene film transistor element by using a four-stage annealing method under a nitrogen atmosphere.
The first part mainly finds the way of multi-four-stage annealing, successfully produces a stable rubrene thin film transistor component, and uses AFM to observe the surface difference of the film before and after annealing, and finds the fourth stage of the finished rubrene. The surface of the film has a large change in morphology, and then the annealing temperature and the change of the Buffer layer are tried, and the current-voltage characteristics are measured to calculate the carrier mobility (μ), the On/Off ratio, and the threshold voltage (VTH). And the electrical parameter value of the subthreshold swing (SS).
The second part is to explore the effect of temperature effect on the Rubrene thin film transistor. It can be known from experiments that the higher the ambient temperature, the higher the current of the rubrene film transistor component, which can be explained by trap binding. When the temperature is increased, the trap binding energy becomes smaller, so the carrier can pass more easily, so the carrier mobility is also increased.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 備受關注的有機半導體分子-紅熒烯(Rubrene) 2
1-3 研究動機與目的 3
第二章 實驗技術與原理簡介 9
2-1 有機薄膜場效電晶體 9
2-1-1 場效電晶體簡介 9
2-1-2 有機場效薄膜電晶體工作原理 9
2-2 量測有機薄膜電晶體電性表現 11
2-2-1 有機材料中的載子傳輸 11
2-2-2 有機薄膜厚度與電晶體表現之關係 12
第三章 實驗藥品、儀器與步驟 18
3-1 實驗材料 18
3-1-1 有機半導體材料 18
3-1-2 有機溶劑 18
3-1-3 高分子材料 18
3-2 元件製作 19
3-2-1 基板清洗 19
3-2-2 基本元件結構製成 19
3-3 使用儀器 19
3-3-1 物理氣相沉積蒸鍍系統 19
3-3-2 X-ray繞射量測系統(XRD) 20
3-3-3 原子力顯微鏡系統(AFM) 20
3-3-4 紫外光-可見光 (UV-Vis) 光譜儀系統 21
3-3-5 Alpha-step Profilometer表面粗度儀 21
3-3-6 接觸角分析系統 21
3-3-7 Keithley 2636電性量測分析儀 21
第四章 紅熒烯薄膜電晶體製作與分析 29
4-1 Rubrene薄膜在PMMA上多階段退火之薄膜變化 29
4-1-1 元件製作 29
4-1-2 利用紫外光照射PMMA以改善Rubrene薄膜之成長 29
4-1-3 多階段退火紅熒烯有機薄膜之表面形貌分析 29
4-1-4 多階段退火紅熒烯薄膜之XRD分析 30
4-1-5 多階段退火紅熒烯薄膜之吸收光譜分析 30
4-1-6 多階段退火紅熒烯有機半導體薄膜之PL分析 31
4-2 紅螢烯薄膜電晶體電流特性分析 31
4-2-1 元件製作 31
4-2-2 一次退火之紅螢烯薄膜電晶體電流特性 32
4-2-3 多階段性退火之紅螢烯薄膜電晶體電流特性 32
4-2-4 不同退火溫度之紅螢烯薄膜電晶體電流特性 33
4-3 Rubrene薄膜在不同buffer layer上之薄膜分析 33
4-3-1 元件製作 33
4-3-2 紅熒烯薄膜在不同Buffer layer之表面形貌分析 33
4-3-3 紅熒烯薄膜在不同Buffer layer之XRD分析 34
4-3-4 紅熒烯薄膜在不同Buffer layer之吸收光譜與PL分析 34
4-4 紅熒烯有機薄膜電晶體在不同Buffer layer之電性分析 35
4-4-1 元件製作 35
4-4-2 不同Buffer layer之紅熒烯薄膜電晶體支電性分析 35
第五章 溫度效應於紅熒烯薄膜電晶體之影響 70
5-1 前言 70
5-2 實驗內容 70
5-3 不同通道長之變溫量測基本電性變化分析 70
5-4 溫度效應對紅熒烯薄膜電晶體元件之電流遲滯影響 71
第六章 結論 112
參考文獻 113
[1] S. E. Thompson andS.Parthasarathy, “Moore’s law: the future of Si microelectronics,” Mater. Today, vol. 9, no. 6, pp. 20–25, 2006.
[2] D. K. a. M. M. Atalla, ‘Silicon-silicon dioxide field induced surface devices,’ IRE-AIEE Solid-state Device Res. Conf., 1960.”
[3] A. Tsumura, T. Ando, and H.Koezuka, “Kalimat-Aktif-Langsung,” vol. 18, 1987.
[4] A.Facchetti, “Semiconductors for organic transistors,” Mater. Today, vol. 10, no. 3, pp. 28–37, 2007.
[5] W. D.Gill, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J. Appl. Phys., vol. 43, no. 12, pp. 5033–5040, 1972.
[6] J.Zaumseil andH.Sirringhaus, “Electron and ambipolar transport in organic field-effect transistors,” Chem. Rev., vol. 107, no. 4, pp. 1296–1323, 2007.
[7] J.Veres, S.Ogier, G.Lloyd, andD.DeLeeuw, “Gate insulators in organic field-effect transistors,” Chem. Mater., vol. 16, no. 23, pp. 4543–4555, 2004.
[8] C. D.Dimitrakopoulos andP. R. L.Malenfant, “Organic thin film transistors for large area electronics,” Adv. Mater., vol. 14, no. 2, pp. 99–117, 2002.
[9] H.Sirringhaus, “Device physics of solution-processed organic field-effect transistors,” Adv. Mater., vol. 17, no. 20, pp. 2411–2425, 2005.
[10] J. A.Rogers, Z.Bao, andV. R.Raju, “Nonphotolithographic fabrication of organic transistors with micron feature sizes,” Appl. Phys. Lett., vol. 72, no. 21, pp. 2716–2718, 1998.
[11] P.Woo, “High-Resolution Inkjet Printing of ALL-Polymer Transistor Circuits,” vol. 290, no. 5499, pp. 2123–2126, 2015.
[12] Z.Bao, J. A.Rogers, andH. E.Katz, “Printable organic and polymeric semiconducting materials and devices,” J. Mater. Chem., vol. 9, no. 9, pp. 1895–1904, 1999.
[13] V. C.Sundar et al., “Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals,” Science (80-. )., vol. 303, no. 5664, pp. 1644–1646, 2004.
[14] J.Takeya et al., “Very high-mobility organic single-crystal transistors with in-crystal conduction channels,” Appl. Phys. Lett., vol. 90, no. 10, 2007.
[15] A. L.Briseno et al., “Patterning organic single-crystal transistor arrays,” Nature, vol. 444, no. 7121, pp. 913–917, 2006.
[16] V.Podzorov, E.Menard, A.Borissov, V.Kiryukhin, J. A.Rogers, andM. E.Gershenson, “Intrinsic charge transport on the surface of organic semiconductors,” Phys. Rev. Lett., vol. 93, no. 8, pp. 1–4, 2004.
[17] D. A.DaSilva Filho, E. G.Kim, andJ. L.Brédas, “Transport properties in the rubrene crystal: Electronic coupling and vibrational reorganization energy,” Adv. Mater., vol. 17, no. 8, pp. 1072–1076, 2005.
[18] J. A.Miwa, F.Cicoira, J.Lipton-Duffin, D. F.Perepichka, C.Santato, andF.Rosei, “Self-assembly of rubrene on Copper Surfaces,” Nanotechnology, vol. 19, no. 42, pp. 10214–10221, 2008.
[19] S. W.Park et al., “Rubrene thin-film transistors with crystalline and amorphous channels,” Appl. Phys. Lett., vol. 90, no. 15, pp. 88–91, 2007.
[20] S.Seo, B. N.Park, andP. G.Evans, “Ambipolar rubrene thin film transistors,” Appl. Phys. Lett., vol. 88, no. 23, 2006.
[21] J. M.Choi, S. H.Jeong, D. K.Hwang, S.Im, B. H.Lee, andM. M.Sung, “Rubrene thin-film transistors with crystalline channels achieved on optimally modified dielectric surface,” Org. Electron. physics, Mater. Appl., vol. 10, no. 1, pp. 199–204, 2009.
[22] S. H.Jeong, J.-M.Choi, D. K.Hwang, S.-W.Park, andS.Im, “Enhanced Mobility of Rubrene Thin-Film Transistors with a Polymer Dielectric on Plastic Substrate,” Electrochem. Solid-State Lett., vol. 10, no. 11, p. H321, 2007.
[23] J. M.Choi andS.Im, “Optimum channel thickness of rubrene thin-film transistors,” Appl. Phys. Lett., vol. 93, no. 4, pp. 91–94, 2008.
[24] Y.Yoon et al., “Characterization of rubrene polycrystalline thin film transistors fabricated using various heat-treatment conditions,” Thin Solid Films, vol. 519, no. 16, pp. 5562–5566, 2011.
[25] D.Liu, Z.Li, Z.He, J.Xu, andQ.Miao, “Induced crystallization of rubrene with diazapentacene as the template,” J. Mater. Chem., vol. 22, no. 10, pp. 4396–4400, 2012.
[26] J.Zhu et al., “Patterning rubrene crystalline thin films for sub-micrometer channel length field-effect transistor arrays,” J. Mater. Chem. C, vol. 2, no. 44, pp. 9359–9363, 2014.
[27] J. J.Kim, H. M.Lee, J. W.Park, andS. O.Cho, “Patterning of rubrene thin-film transistors based on electron irradiation of a polystyrene dielectric layer,” J. Mater. Chem. C, vol. 3, no. 11, pp. 2650–2655, 2015.
[28] Digital modulator goes transparent. Nano Tech, 2012. .
[29] W. Brüning, Physics of Organic Semiconductors, 2005. .
[30] 陳金鑫, OLED 有機電激發光材料與元件, 台北市: 五南圖書出版股份有限公司, 2005. .
[31] D.Käfer, L.Ruppel, G.Witte, andC.Wöll, “Role of molecular conformations in rubrene thin film growth,” Phys. Rev. Lett., vol. 95, no. 16, pp. 1–4, 2005.
[32] G.Horowitz, M. E.Hajlaoui, andR.Hajlaoui, “Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors,” J. Appl. Phys., vol. 87, no. 9 I, pp. 4456–4463, 2000.
[33] Rashmi et al., “Effect of field dependent trap occupancy on organic thin film transistor characteristics,” J. Appl. Phys., vol. 94, no. 8, pp. 5302–5306, 2003.
[34] F.Dinelli, M.Murgia, P.Levy, M.Cavallini, F.Biscarini, andD. M.DeLeeuw, “Spatially Correlated Charge Transport in Organic Thin Film Transistors,” Phys. Rev. Lett., vol. 92, no. 11, pp. 90–93, 2004.
[35] M.Kiguchi, M.Nakayama, K.Fujiwara, K.Ueno, T.Shimada, andK.Saiki, “Accumulation and depletion layer thicknesses in organic field effect transistors,” Japanese J. Appl. Physics, Part 2 Lett., vol. 42, no. 12 A, pp. 10–13, 2003.
[36] J.Gao, J. B.Xu, M.Zhu, N.Ke, andD.Ma, “Thickness dependence of mobility in CuPc thin film on amorphous SiO2substrate,” J. Phys. D. Appl. Phys., vol. 40, no. 18, pp. 5666–5669, 2007.
[37] C. R.Newman, C. D.Frisbie, D. A.DaSilva Filho, J. L.Brédas, P. C.Ewbank, andK. R.Mann, “Introduction to organic thin film transistors and design of n-channel organic semiconductors,” Chem. Mater., vol. 16, no. 23, pp. 4436–4451, 2004.
[38] H.-W.Zan andK.-H.Yen, “High Photoresponsivity of Pentacene-Based Organic Thin-Film Transistors with UV-Treated PMMA Dielectrics,” Electrochem. Solid-State Lett., vol. 11, no. 8, p. H222, 2008.
[39] H.Najafov, I.Biaggio, V.Podzorov, M. F.Calhoun, andM. E.Gershenson, “Primary photoexcitations and the origin of the photocurrent in rubrene single crystals,” Phys. Rev. Lett., vol. 96, no. 5, pp. 5–8, 2006.
[40] L.Chen, J. X.Deng, L.Kong, M.Cui, R. G.Chen, andZ. J.Zhang, “Optical properties of rubrene thin film prepared by thermal evaporation,” Chinese Phys. B, vol. 24, no. 4, 2015.
[41] M.Egginger, S.Bauer, R.Schwödiauer, H.Neugebauer, andN. S.Sariciftci, “Current versus gate voltage hysteresis in organic field effect transistors,” Monatshefte fur Chemie, vol. 140, no. 7, pp. 735–750, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top