跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/03 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁庭華
研究生(外文):Liang, Ting-Hua
論文名稱:施用超吸水聚合物對蔬菜育苗及容器栽培之影響
論文名稱(外文):The Effect of Super Absorbent Polymer(SAP)on Seedling Production and Container Cultivation of Vegetables
指導教授:洪進雄洪進雄引用關係
指導教授(外文):Hung, Chin-Hsiung
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:園藝學系研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:132
中文關鍵詞:保水劑水凝膠逆境水分施肥粒徑
外文關鍵詞:super absorbent polymerhydrogelsstresswaterfertilizationparticle size
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討以無土介質施用保水劑對蔬菜穴盤育苗生產及品質之影響,以台麗保AG 301、台麗保AG 303與水寶WB保水劑,探討保水劑施用量、粒徑大小配合不同澆水頻率、施肥倍數對蔬菜植株性狀之影響。
小白菜‘蜜雪兒’及青梗白菜‘芳蓉’播種至104格穴盤進行育苗,育苗介質中分別施用1 g‧L-1三種保水劑,未施用保水劑為對照組,結果顯示,出土率以AG301保水劑處理為佳,小白菜出土率又以每2日澆水處理較佳,青梗白菜以每4日與6日為佳。幼苗移植至5吋黑軟盆後栽培15日並進行澆水處理,小白菜以粗粒徑保水劑AG303處理之地上部鮮重、株高及地下部鮮重為佳,青梗白菜以保水劑粗粒徑AG303與WB處理之地上部鮮重及株高為佳;栽培30日後調查成株小白菜與青梗白菜,以粗粒徑保水劑WB處理每4日與每6日澆水處理之葉數、地上部鮮重、地上部乾重及株高為較佳。保水劑對穴盤出土率以每2日澆水處理之細粒徑保水劑為佳,植株生長效益以粗粒徑之保水劑為最高,細粒徑保水劑則為較差。施用保水劑對於每2日澆水處理形成負影響,而每4日澆水處理或每6日澆水處理配合保水劑之施用能維持最佳植株性狀品質。
甜瓜‘嘉玉’與辣椒‘朱雀’施用台麗保AG301與WB保水劑0.5 g、1 g與2 g‧L-1於泥炭土中,以每2日、4日、8日與16日為澆水時間處理,結果顯示甜瓜與辣椒之出土率以每4日澆水處理施用AG301保水劑2 g‧L-1為佳,施用兩種保水劑均能增加甜瓜與辣椒穴盤育苗之地上部鮮重、地上部乾重與株高,亦能使澆水頻率由每2日延長至每4日澆水,16日澆水處理則僅有AG301保水劑處理有植株存活,顯示施用保水劑於有效水分灌溉管理上是有顯著性的效益。
將小白菜進行穴盤育苗至4片本葉,移植至五吋黑軟盆,添加泥炭土施用保水劑AG301與WB,每8日以花寶五號N30-P10-K10 (Hyponex No.5)1000 ppm及2000 ppm澆灌於小白菜‘蜜雪兒’,以未施肥為對照組,栽培兩週後,以澆灌花寶五號1000ppm並施用AG301保水劑3 g‧L-1、5 g‧L-1與2000 ppm施用WB保水劑5 g‧L-1之葉數、地上部鮮重、地上部乾重與株高為較佳,栽培4週後,以澆灌花寶五號1000 ppm於保水劑AG301濃度與WB保水劑5 g‧L-1處理之葉數、地上部鮮重、地上部乾重與株高為最佳,小白菜植株性狀因保水劑施用量增加而促進其生長更佳,且增加產量,顯示保水劑能有效保留養分,減少施肥量,對合理化施肥及水分管理甚有意義。
This study was investigated the effect of applying super absorbent polymer(SAP)on plant characteristics of vegetable seedlings in peat moss. Three type of SAP(Tairysorb® Taisap AG 301, Tairysorb® Taisap AG 303 and Shui-bao WB)were applied and used as treatment group. To evaluate the effect of different type of SAP treatment, particle size, irrigation frequency and fertilizer ratio on plant characteristics of vegetable.
Pak-choi(Brassica rapa L. ‘michelle’) and green stalk Pak-choi(Brassica rapa L. ‘fang rong’) were sowed in plug with peat moss mixed with SAP(Tairysorb® Taisap AG 301, Tairysorb® Taisap AG 303 and Shui-bao)and the control with no SAP. The results had showed that seed germination of two pak-choi seeds had significantly improved by adding AG301with 1 g‧L-1 treatment, Pak-choi had best seed germination rate with water supplying every 2 days and green stalk Pak-choi had the best in seed germination rate with water supplying every 4 and 6 days. Transplanted to black plastic pot with same treatment and cultivated for 15 days, Pak-choi had significantly improved on shoot fresh weight, root fresh weight and plant height by adding AG303 SAP, green stalk Pak-choi also had same results by adding large particle of AG303 and Shui-bao SAP. Cultivated for 30 days, both of non-heading Pak-choi and green stalk Pak-choi had significantly been improved on leaf number, shoot fresh weight, shoot dry weight and plant height by adding large particle Shui-bao SAP with water supplying every 4 and 6 days. Fine particle of SAP had been better in seed germination than large particle of SAP with water supplying every 2 days, and transplanted Pak-choi and green stalk Pak-choi vice versa. SAP treatment had a negative effect on water supplying every 2 days, by contrast, water supplying every 4 and 6 days could maintain the quality and plant characteristics in Pak-choi and green stalk Pak-choi.
Muskmelon(Cucumis melo var. makuwa Makino L. ‘Jill’)and hot pepper(Capsicum annuum L. ‘KY Chivalry’)were sowed in plug with peat moss mixed with SAP 0.5 g‧L-1,1 g‧L-1 and 2 g‧L-1(Tairysorb® Taisap AG 301 and Shui-bao SAP)and the peat moss with no SAP severed as control by irrigation for every 2, 4, 8, and 16 days. The results had showed that the seed germination of muskmelon and hot pepper had significantly improved by adding 2 g‧L-1 AG301 SAP and watering every 4 days. SAP treatment could increase shoot fresh weight, shoot dry weight and plant height of both muskmelon and hot pepper, moreover, achieve the purpose of extending irrigation frequency.
Pak-choi(Brassica rapa L. ‘michelle’) plug seedling were transplanted in black plastic pot with peat moss mixed with SAP 1 g‧L-1,3 g‧L-1 and 5 g‧L-1(Tairysorb® Taisap AG 301 and Shui-bao SAP)then fertilized with 1000 ppm and 2000 ppm solution of Hyponex No.5 (N30-P10-K10) every eight days. After cultivating Pak-choi for two weeks, the results had showed that treatment with Alcosorb® SAP 3, 5 g‧L-1 and fertilized with Hyponex No.5 1000 ppm solution and Shui-bao 5 g‧L-1 with Hyponex No.5 2000 ppm had improved significantly on leaf number, shoot fresh weight, shoot dry weight and plant height. After cultivating Pak-choi for four weeks, the results had showed that treatment with (AG301 and Shui-bao 5 g‧L-1)and fertilized with Hyponex No.5 1000 ppm solution had improved significantly on leaf number, shoot fresh weight, shoot dry weight and plant height. SAP application can improve many plant characteristics of Pak-choi. The results indicated that SAP not only can conserve the efficiency of the fertility in the soil but also reduce requirements of fertilizer for Pak-choi, it’s truly meaning for management of irrigation and fertilizer application.
表目次(List of Table) IX
圖目次(List of Figures) X
壹、緒論 1
Chapter 1. Introduction 1
貳、前人研究 3
Chapter 2. Literature Review 3
一、水分與作物生長的關係 3
(一)水分與土壤的關係 3
(二)灌溉水量與作物生長的關係 4
(三)水分對於作物產量影響 4
二、保水劑 5
(一)定義 5
(二)保水劑之作用原理 6
(三)保水劑的性質與分類 7
(四)保水劑之降解及安全性 9
(五)保水劑對土壤之作用 10
(六)保水劑於農業上之應用 11
(七)保水劑其他領域之應用 15
參、材料與方法 17
Chapter 3. Material and Methods 17
一、添加保水劑及澆水頻率對小白菜與青梗白菜穴盤育苗生產及品質之影響 17
二、添加保水劑種類及澆水頻率對瓜果穴盤育苗生長及生長特性影響 21
三、添加不同保水劑添加量與施肥量對小白菜生長性狀之影響 25
肆、結果 30
Chapter 4. Results 30
一、添加保水劑及澆水頻率對小白菜與青梗白菜穴盤育苗生產及品質之影響 30
(一)小白菜 30
(二)青梗白菜 35
二、添加保水劑種類及澆水頻率對瓜果穴盤育苗生長及生長特性影響 40
(一)甜瓜 40
(二)辣椒 50
三、添加不同保水劑添加量與施肥量對小白菜生長性狀之影響 59
伍、討論 108
Chapter 5. Discussion 108
陸、結論 121
Chapter 6. Conclusion 121
參考文獻Reference 123
附錄Appendix 132
王强. 2009. 土壤保水劑研究進展. 山西水土保持科技 4:9-11.
刘守伟、潘凯. 2008. 綠葉菜類蔬菜栽培, p. 245-260. 刊於:于广建主編. 蔬菜栽培 中國農業技術出版社. 東北. 中國.
刘晓英、林而达. 2004. 氣候變化對華北地區主要作物需水量的影響. 水利學報 2:77-87.
刘煜宇、马焕成、黄金义. 2005. 保水劑與肥料交互作用對石楠抗旱效應的影響. 西南林學院學報 25:10-13.
吕彪、王治江、靳晓爱、石多琴、王勤礼. 2009. 不同保水劑對玉米種子萌發及幼苗抗旱性的影響. 現代農業科學 16:51-53.
行政院農委會. 2018. 農業統計年報. 農業統計資料查詢系統. < http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx >
吴淑芳、吴普特、冯浩. 2003. 高分子聚合物對土壤物理性質的影響研究. 水土保持通報 23:42-45.
张丽、祝利海. 2002. 保水劑對玉米、小麥種子萌發的影響. 安徽農業學報 30:921- 922.
张蕊、白岗栓. 2012. 保水劑在農業生產中的應用及發產前景. 農業學報 2:37-42.
李开扬、任天瑞. 2002. 高吸水樹脂在農業中的應用. 過程工程學報 2:91-96.
杨红善、刘瑞凤、张俊平、王爱勤. 2005. PAAM-atta 複合保水劑對土壤持水性及其物理性能的影響. 土壤保持學報 19:38-41.
林健、郑晓广、张明. 2011. 木質素硫磺酸鈣共聚物高吸水樹脂合成研究. 科技導報 29:33-36.
陈海丽、吴震、尹汉文、吴明池. 2006. 不同濃度保水劑對黃瓜幼苗生長之影響. 瀋陽農業大學學報 37:505-508.
荣烨、叶启良、江玉波、刘小刚、刘艳伟、王卫华. 2014. 水肥與保水劑處理隊小桐子生長與水分利用的影響. 排灌機械工程學報 32:1005-1012.
耿桂俊、白岗栓、杜社妮、于健、李曼. 2011. 保水劑施用方式對土壤水鹽及番茄生長的影響. 中國水土保持科學 9:65-70.
蔡瑜卿. 2016. 104年臺灣地區蔬菜育苗產業現況調查與分析. 種苗科技專訊 95:31-35.
Allen, R.G., L.S. Pereira, D., Raes, and M. Smith. 1998. Crop evaportranspiration-guidelines for computing crop water requirements. FAO J. Irr. Drain. 56:1-15.
Arbona, V., D.J. Iglesias, J. Jacas, E. Primo-Millo, M. Talon, and A. Gómez-Cadenas. 2005. Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant Soil 270:73-82.
Argo, W.R. and J.A. Biernbaum. 1994. Irrigation requirements, root-medium pH, and nutrient concentrations of easter lilies grown in five peat-based media with and without an evaporation barrier. J. Amer. Soc. Hort. Sci. 119:1151-1156.
Azzam, R.A.I. 1983. Polymeric conditioner gel for desert soils. Commun. Soil Plant Anal. 14:739-760.
Bae, C.Y., J.S. Hwang, J.J. Bae, S.C. Choi, S.H. Lim, D.G. Choi, J.G. Kim, and Y.S. Choo. 2013. Physiological responses of Calystegia soldanella under drought stress. J. Ecol. Environ. 36:255-265.
Bai, W., H. Zhang, B. Liu, Y. Wu, and J. Song. 2010. Effects of super‐absorbent polymers on the physical and chemical properties of soil following different wetting and drying cycles. Soil Use Mgt.26: 253-260.
Ben-Hur, M. and R. Keren. 1997. Polymer effects on water infiltration and soil aggregation. Soil Sci. Soc. Amer. J. 61:565-570.
Boatright, J.L., D.E. Balint, W.A. Mackay, and J.M. Zajicek. 1997. Incorporation of a hydrophilic polymer into annual landscape beds. J. Environ. Hort. 15:37-40.
Bortolin, A., F.A. Aouada, M.R. de Moura, C. Ribeiro, E. Longo, and L.H. Mattoso. 2012. Application of polysaccharide hydrogels in adsorption and controlled‐extended release of fertilizers processes. J. Appl. Polymer Sci. 123:2291-2298.
Burnett, S.E., S.V. Pennisi, P.A. Thomas, and M.W. van Iersel. 2005. Controlled drought affects morphology and anatomy of Salvia splendens. J. Amer. Soc. Hort. Sci. 1305:775-781.
Caló, E. and V.V. Khutoryanskiy. 2015. Biomedical applications of hydrogels: A review of patents and commercial products. Euro. Polymer J. 65:252-267.
Connor, R. 2016. Improving water efficiency and productivity. U. N. World Water Dev. E. 2016.Paris UNESCO. p. 99-106.
Decoteau, D.R. 2007. How environment factors affect vegetable production, p. 39-48. In: D.R. Decoteau (ed.). Vegetable crops. Peason Ed.
Doorenbos, J. and W.O. Pruitt. 1977. Crop Water Requirements. FAO Irr. Drainage Paper 24:144.
El-Gindy, A.M. and A.M. El-Araby. 1996. Vegetable crop response to surface and subsurface drip under calcareous soil. Proc. Int. Conf. Evapot. Irr. Sch. 3:1021-1028.
El-Hadi, O.A. and Y.E. Camelia. 2004. The conditioning effect of composts (natural) or/and acrylamide hydrogels (synthesized) on sandy calcareous soil. Growth response, nutrients uptake and water and fertilizers use efficiency by tomato plants. J. Appl. Sci. Res. 2:1293-1297.
Fapohunda, H.O. 1992. Irrigation frequency and amount for okra and tomato using point source sprinkler system. Sci. Hort. 49:25-31.
Ghasemi, G.M. and M. Khoushkhouy. 2007. Effects of super absorbent polymer on irrigation interval and growth and development of Chrysanthemum (Dendranthema ×grandiflorumKitam syn. Chrysanthemum morifoliumramat). Iranian J. Hort. Sci. Technol. 8:65-82.
Han, Y.G., P.L. Yang, Y.P. Luo, S.M. Ren, L.X. Zhang, and L. Xu. 2010. Porosuty chang model for watered super absorbent polymer-treated soil. Environ. Earth Sci. 61:1197-1205.
Henderson, J.C. and D.L. Hensley. 1985. Ammonium and nitrate retention by a hydrophilic gel. HortSci. 20:667-668.
Hüettermann, A., L.J. Orikiriza, and H. Agaba. 2009. Application of superabsorbent polymers for improving the ecological chemistry of degraded or polluted lands. Clean Soil Air Water 37:517-526.
ICID-CIID. 2000. Multilingual technical dictionary on irrigation and drainage. New Dehli.
Islam, M.R., Y. Hu, S. Mao, J. Mao, A.E. Eneji, and X. Xue. 2011. Effectiveness of a water‐saving super‐absorbent polymer in soil water conservation for corn(Zea mays L.)based on eco-physiological parameters. J. Sci. Food Agri. 91:1998-2005.
Jhurry, D. 1997. Agricultural polymers. Food Agr. Res. Council, Réduit, Mauritius. p. 109-113.
Johnson, M.S. 1984. Effect of soluble salts on water absorption by gel-forming soil conditioners. J. Sci. Food Agr. 35:1063-1066.
Kage, H., M. Kochler, and H. Stützel. 2004. Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. European J. Agron. 20:379-394.
Keshavarz, L. and H. Farahbakhsh. 2012. Effect of superabsorbent on physio-morphological traits and forage yield of millet (Pennisetum americanum L.) under different irrigation treatments. Inter. J. Plant Anim. Environ. Sci. 3:149-156.
Kiatkamjornwong, S., W. Chomsaksakul, and M. Sonsuk. 2000. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide. Radiat. Phys. Chem. 59:413-427.
Kong, X.M., Z.L. Zhang, and Z.C. Lu. 2015. Effect of pre-soaked superabsorbent polymer on shrinkage of high-strength concrete. Mater. Struct. 48:2741-2758.
Kosemund, K., H. Schlatter, J.L. Ochsenhirt, E.L. Krause, D.S. Marsman, and G.N. Erasala. 2009. Safety evaluation of superabsorbent baby diapers. Regulat. Toxicol. Pharmacol. 53:81-89.
Kuruwita-Mudiyanselage, T.D. 2008. Smart polymer materials. Bowling Green State Univ., Ohio, USA., PhD Diss.
McCollister, D.D., C.L. Hake, S.E. Sadek, and V.K. Rowe. 1965. Toxicologic investigations of polyacrylamides. Toxicol. Appl. Pharmacol. 7:639-651.
McGaugh, M.C. and S. Kottle. 1967. The thermal degradation of poly(acrylic acid). J. Polym. Sci. Part B 5:817–820.
Mgadla, N.P., M. Imtiyaz, and B. Chepete. 1995. Wheat production as influenced by limited irrigation. Dept. Agri. Res. p. 22.
Mikkelsen, R.L. 1994. Using hydrophilic polymer to control nutrient release. Fert. Res. 38:53-59.
Montesano, F.F., A. Parente, P. Santamaria, A. Sannino, and F. Serio. 2015. Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agr. Agr. Sci. procedia 4:451-458.
Murphy, P.S. and G.R. Evans. 2012. Advances in wound healing: a review of current wound healing products. Plastic Surgery Intl. 2012:1-8.
Nagaraj Gokavi, R., K. Mote, D.S Mukharib, A.N. Manjunath, and Y. Raghuramulu. 2018. Performance of hydrogel on seed germination and growth of young coffee seedlings in nursery. J. Pharmacogn. Phytochem. 7:1364-1366.
Nakamoto, T. 1993. Effect of soil water content on the gravitropic behavior of nodal roots in maize. Plant and Soil 152:261-267.
Nazarli, H., F. Faraji, and M.R. Zardashti. 2011. Effect of drought stress and polymer on osmotic adjustment and photosynthetic pigments of sunflower. Cercet. Agron. Moldova 44:35-41.
Nazarli, H., M.R. Zardashti, R. Darvishzadeh, andS. Najafi. 2010. The effect of water stress and polymer on water use efficiency, yield and several morphological traits of sunflower under greenhouse condition. Notulae Scientia Biol. 2:53-58.
Nelson, P.V. 2003. Greenhouse operation and management. Prentice Hall Intl., N. J., USA.
Oraee, A. and E.G. Moghadam. 2013. The effect of different levels of irrigation with superabsorbent (S.A.P.) treatment on growth and development of Myrobalan (Prunus cerasifera) seedling. Af. J. Agr. Res. 8:1813-1816.
Orzalek, M.D. 1993. Use of hydrophylic polymers in horticulture. Hort. Technol. 3:41-44.
Peppas, N.A., P. Bures. W. Leobandung, and H. Ichikawa. 2000. Hydrogels in pharmaceutical formulations. Euro. J. Pharm. Biopharm. 50:27-46.
Robiul Islam, M., Z. Zeng, J. Mao, A. Egrinya Eneji, X. Xue, and Y. Hu. 2011. Feasibility of summer corn (Zea mays L.) production in drought affected areas of northern china using water-saving superabsorbent polymer.Plant Soil Environ. 57:279-285.
Saruchi, B.S. Kaith, R. Jindal, and V. Kumar. 2015. Biodegradation of Gum tragacanth acrylic acid based hydrogel and its impact on soil fertility. Polym. Degrad. Stab.115:24-31.
Sayyari, M. and F. Ghanbari. 2012. Effect of superabsorbent polymer A200 on the growth, yield and some physiological response in sweet pepper (Capsicum annuum L.) under various irrigation regimes. Intl. J. Agr. Food Res. 1:1-11.
Singh, B.P. 1987. Effect of irrigation on the growth and yield of okra. Hortsci. 22:879-880.
Singh, P.N. and S.C. Mohan. 1994. Water use and yield response of sugar cane under different irrigation schedules and nitrogen levels in a subtropical region. Agr. Water Manage 26:253-264.
Sojka, R.E., D.L. Bjorneberg, J.A. Entry, R.D. Lentz, and W.J. Orts. 2007. Polyacrylamide in agriculture and environmental land management. Adv. Agron. 92:75-162.
Song, X.F., J.F. Wei, and T.S. He. 2009. A method to repair concrete leakage through cracks by synthesizing super-absorbent resin in situ. Constr. Build. Mater. 23:386-391.
Stahl, J.D., M.D. Cameron, J. Haselbach, and S.D. Aust. 2000. Biodegradation of superabsorbent polymers in soil. Environ. Sci. Pollut. Res. 7:83-88.
Starkey, T.E., S.A. Enebak, D.B. South, and R.E. Cross. 2012. Particle size and composition of polymer root gels affect loblolly pine seedling survival. Native Plants J. 13:19-26.
Taylor, K.C. and R.G. Halfacre. 1986. The effect of hydrophilic polymer on media water retention and nutrient availability to Ligustrum lucidum. HortSci. 21:1159-1161.
Wallace, A. and G.A. Wallace. 1986. Effects of soil conditioners on emergence and growth of tomato, cotton, and lettuce seedlings. Soil Sci. 141:313-316.
Wang, Y.T. and C.A. Boogher. 1987. Effect of a medium-incorporated on plant growth and water use of two foliage specied. J. Environ. Hort. 5:125-127.
Wichterle, O. and D. Lim. 1960. Hydrophilic gels for biological use. Nature 185:117-118.
Wilske, B., M. Bai, B. Lindenstruth, M. Bach, Z. Rezaie, H.G. Frede, and L. Breuer. 2014. Biodegradability of a polyacrylate superabsorbent in agricultural soil. Environ. Sci. Pollut. Res. 2116:9453-9460.
Yang, L., Y. Yang, Z. Chen, C. Guo, and S. Li. 2014. Influence of superabsorbent polymer on soil water retention, seed germination and plant survivals for rocky slopes eco-engineering. Ecol. Eng. 62:27-32.
Yazdani, F., I. Allahdadi, G.A. Akbari, and M.R. Behbahani. 2007. Effect Of Different Rates Of Superabsorbent Polymer (Tarawat A200) On Soybean Yield And Yield Components (Glycine Max L). J. Pajouhesh Sazandegi 20:167-174
Yin, C., B. Duan, X. Wang, and C. Li. 2004. Morphological and physiological response of two contrasting poplar species to drought stress and exogenous abscisic acid application. Plant Sci. 167:1091-1097.
Zhao, D.P. and J.Y. Zhang. 2003. Vegetation protection techniques of slopes. China Communication Press, C.N.
Zohuriaan-Mehr, M. J. and K. Kabiri. 2008. Superabsorbent polymer materials: a review. Iran. polymer J. 17:451-447.
Zohuriaan-Mehr, M.J., H. Omidian, S. Doroudiani, and K. Kabiri. 2010. Advances in non-hygienic applications of superabsorbent hydrogel materials. J. Mater. Sci. 45:5711-5735.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top