(34.239.176.198) 您好!臺灣時間:2021/04/23 20:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭德銘
研究生(外文):De-Ming Cheng
論文名稱:金奈米粒子與金薄膜之耦合效應探討及模擬分析
論文名稱(外文):Plasmonic Coupling of Gold Nanoparticle on Gold Film: Experiment and Simulation
指導教授:曾賢德
指導教授(外文):Shien-Der Tzeng
口試委員:江海邦賴建智
口試委員(外文):Hai-Pang ChiangChien-Chih Lai
口試日期:2019-1-11
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:89
中文關鍵詞:金奈米粒子表面電漿共振耦合效應
外文關鍵詞:gold nanoparticlesLSPRcoupling effect
相關次數:
  • 被引用被引用:1
  • 點閱點閱:254
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
  金奈米顆粒與金薄膜間的電漿子耦合效應已被人發現研究,由許多文獻得知金奈米顆粒與金薄膜間的耦合效應對兩者在極小間距下非常敏感,許多研究利用不同方法定義出金顆粒與金薄膜的距離,並觀察其表面電漿耦合效應。為了在極小距離下有系統的分析此現象,我們利用自組裝奈米顆粒的特性,在粒徑為50奈米大小的金顆粒表面修飾上3-Mercaptopropionic acid (3-MPA)、6-Mercaptohexanoic acid (6-MHA)、11-Mercaptoundecanoic acid (11-MUA)、16-Mercaptohexadecanoic acid (16-MHA),四種不同長度的分子,且在金薄膜基板上修飾cysteamine半胱胺分子,利用離心法將金顆粒分散沉積在金薄膜表面,成功製作出大面積單顆分散的金顆粒與金薄膜樣品,並可藉由修飾分子控制兩者間的距離。
  實驗中,以 70°入射角量測反射式吸收光譜。結果顯示當垂直於金薄膜表面的偏振電場(s-polarization)入射樣品時,吸收光譜呈現兩個特徵波峰,接近530奈米的特徵波峰為金顆粒本身之吸收,此特徵波峰會因間距縮短而稍微紅移;而另一特徵波峰為金顆粒與金薄膜之表面電漿共振耦合產生的吸收,且兩者間距由2.75奈米縮短至1.14奈米時,耦合共振波段由610奈米紅移至710奈米。
  接著我們以模擬計算驗證,金顆粒與金薄膜間的增強電場確實與其耦合共振波段類似。粒徑50奈米金顆粒計算結果顯示,表面增強電場同樣出現兩個特徵波峰,分別對應金顆粒之吸收波峰及金顆粒與金薄膜間的耦合共振波峰,且隨著間距由5奈米縮短至0.5奈米,耦合共振波峰從564奈米紅移至697奈米。粒徑40奈米金顆粒計算結果,間距由2奈米縮短至0.5奈米,耦合共振波峰從575奈米紅移至665奈米。從計算結果得知,耦合共振波峰與粒徑大小有關,且金顆粒與金薄膜之間距變化,與耦合共振波長呈現一冪次關係。為了對應實驗上量測結果,我們將粒徑大小調整為54奈米並加入折射率n=1.21進行模擬計算,得到當金顆粒與金薄膜間距為3奈米時,耦合共振波峰約為608奈米。間距為2奈米時,耦合共振波峰約為629奈米。當間距縮短至1奈米時,耦合共振波峰約為701奈米。從間距3奈米縮短至1奈米,耦合共振波峰將由608奈米明顯紅移至701奈米,顯示出調整粒徑大小及加入折射率條件後之模擬計算結果與實驗量測結果趨勢一致。
  接著,藉由大氣電漿容易與碳氫鍵分子反應的特性,我們將金顆粒表面修飾長碳鏈分子(11-MUA及16-MHA)分別進行短時間及長時間的電漿處理。經由數次短時間的電漿處理後,可以看出耦合共振波峰有稍微紅移的現象,而金顆粒本身的吸收並無明顯變化。進行長時間電漿處理(約30分鐘)後,修飾11-MUA分子及16-MHA分子之金顆粒與金薄膜的耦合共振波峰分別由639奈米紅移至714奈米及591奈米紅移至619奈米,將此結果代入擬合之冪次函數,得到經由長時間電漿處理後表面修飾11-MUA分子之金顆粒與金薄膜間距縮短0.8奈米,使得表面電漿共振波峰紅移約75奈米;而表面修飾16-MHA分子之間距縮短約1.3奈米,使得表面電漿共振波峰紅移約28奈米。我們也預期間距縮短造成的耦合共振波段紅移將隨著電漿處理時間增加而趨緩,因長碳鏈修飾分子電漿處理一段時間後分子會趨於穩定結構,不易與電漿氣體反應,金顆粒與金薄膜間距不再變化,使得兩者間的表面電漿耦合共振效應在長時間電漿處理後趨緩。
Previous studies had shown that plasmonic coupling between gold nanoparticle and gold film was highly sensitive with their extremely close gap distance. Different ways were provided to define nanogap between gold nanoparticles and gold film for plasmonic coupling effect. In order to systematically study coupling effect in an extremely close distance, self-assembly monolayer technique were used in this work. We modified four kind of molecular (3-Mercaptopropionic acid (3-MPA), 6-Mercaptohexanoic acid (6-MHA), 11-Mercaptoundecanoic acid (11-MUA), 16-Mercaptohexadecanoic acid (16-MHA)) with different length on the surface of 50 nm gold nanoparticle and Cysteamine on the gold film. By centrifugal process, we can easily deposit gold nanoparticles on gold film and control their gap distance through modified molecular.
Experimental results by measuring reflecting spectrum show that there are two characteristic absorption peak when vertical polarization incident. Surface plasma resonance peak shift from 610 nm to 710 nm as gap distance decrease from to . Absorption peak from gold nanoparticle remain at 530 nm.
Simulation shows that electric field enhancement between gold nanoparticles and gold film were similarly to experimental resonance wavelength. Two characteristic enhanced wavelength were also found. As gap distance decrease from 5 nm to 0.5 nm, resonance wavelength red shift from 564 nm to 697 nm. For 40 nm particle size, red shift from 575 nm to 665 nm as gap distance decrease from 2 nm to 0.5 nm. Coupling peak related to the size of gold nanoparticles and red-shifted in resonance wavelength following a power law with decreasing film-NPs gap distance.
For correspondence, we change our parameter in simulation. 54 nm gold nanoparticles are replaced and apply refractive index n=1.21. As gap distance between gold nanoparticles and gold film set at 3, 2, 1 nm resonance peak shifted to 608, 629, 701 nm, respectively. Simulation results are consistent with experimental measurement though adjust gold nanoparticle diameter and apply refractive index.
Furthermore, with the properties of atmospheric hydrogen plasma easily reacting with carbon-bonded molecules we applied short and long time plasma treatment to gold nanoparticles modified with long carbon chain molecular such as 11-MUA and 16-MHA, respectively. With short time process resonance wavelength red shifted slightly, absorption of gold nanoparticles remain in the same. However, in long time plasma treatment (30 min), resonance wavelength evidently shifted from 639 nm to 714 nm for 11-MUA modification, 591 nm to 619 nm for 16-MHA modification. Then, we substitute these results in the experimental fitting curve. It shows that long time plasma treatment for 11-MUA with 0.8 nm shorten gap distance red-shifted occurred in resonance wavelength for 75 nm. And 16-MHA with 1.3 nm shorten distance resonance wavelength red shifted for 28 nm. We also expect that the red shifted of the coupling resonance wavelength caused by the shortening gap distance will slow down as the plasma processing time increases. For modified long carbon chain molecular with long time plasma treatment tend to be stable. Without interaction to plasma gas, distance between gold nanoparticles and gold film no longer decreased leading no change to resonance coupling wavelength in long tome plasma treatment.
第一章 緒論 1
第二章 理論與文獻探討 3
2.1 金屬粒子表面電漿共振簡介 3
2.2 單一金奈米粒子之光學特性 8
2.3 金奈米粒子耦合之特性 10
2.4 金奈米粒子與金薄膜之耦合效應 12
第三章 實驗材料準備及方法 19
3.1 實驗藥品與儀器 19
3.1.1 實驗儀器 19
3.1.2 實驗藥品 20
3.2 金奈米粒子溶液製備 21
3.2.1 粒徑 12 nm 金奈米粒子之製備 25
3.2.2 粒徑 50 nm 金奈米粒子之製備 26
3.3 金奈米粒子表面修飾與純化 28
3.3.1 粒徑 50 nm 金奈米粒子表面修飾 3-MPA 28
3.3.2 粒徑 50 nm 金奈米粒子表面修飾 6-MHA、11-MUA、16-MHA 29
3.4 基板表面清洗與修飾 30
3.4.1 基板表面標準清洗流程 30
3.4.2 玻璃基板表面修飾 APTMS 分子膜 32
3.4.3 矽晶圓鍍鎳金薄膜基板修飾 Cysteamine 分子膜 32
3.5 金奈米粒子薄膜製作 33
3.5.1 緊密排列之單層金奈米粒子薄膜製作 35
3.5.2 低覆蓋率(單顆分散)之金奈米粒子薄膜製作 35
3.6 實驗儀器架設 36
第四章 實驗結果 39
4.1 樣品製作結果 39
4.2 金薄膜基板表面分析 44
4.3 粒徑50 nm金奈米顆粒溶液分析 46
4.4 粒徑50 nm金奈米顆粒吸收光譜 47
4.4.1 不同偏振角度(90° ~ 0°)之吸收光譜 47
4.4.2 偏振角度為0度之吸收光譜 49
4.4.3 偏振角度為90度之吸收光譜 52
第五章 模擬計算與結果 57
5.1 模擬參數設定 57
5.2 模擬實驗結果 61
第六章 電漿處理應用 73
6.1 電漿原理簡介 73
6.2 電漿處理結果 76
第七章 結論 81
參考文獻 83
[1] N. Nath and A. ChilkotiA, “Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface”, Chem. 74, 504-509, (2002).
[2] E. Hutter, D. Maysinger “Gold-nanoparticle-based biosensors for detection of enzyme activity”, Cell Press 34, 497, (2013).
[3] G. K. Darbha, A. K. Singh, U. S. Rai, E. Yu, H. Yu and P. C. Ray, “Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles ”, J. Am. Chem. Soc., 130 (25), pp 8038–8043, (2008).
[4] Y. Kim, R. C. Johnson, and J. T. Hupp “Gold Nanoparticle-Based Sensing of “Spectroscopically Silent” Heavy Metal Ions”, Nano Letters , 1, 4, 165-167,(2001).
[5] N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Müllen, A. Yasuda, and T. Vossmeyer, “Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications”, Nano Letters, 2 (5), pp 551–555, (2002).
[6] N. Krasteva, Y. Fogel, R. E. Bauer, K. Müllen, Y. Joseph, N. Matsuzawa, A. Yasuda, T. Vossmeyer, “Vapor Sorption and Electrical Response of Au‐Nanoparticle– Dendrimer Composites”, Adv. Funct. Mater., 17, 881–888, (2007).
[7] E. Chow, Karl-Heinz Müller, E. Davies, B. Raguse, L. Wieczorek, J. S. Cooper, and L. J. Hubble, “Characterization of the Sensor Response of Gold Nanoparticle Chemiresistors”, J. Phys. Chem. C, 114 (41), (2010).
[8] B. Raguse, C. S. Barton, Karl-Heinz Müller, E. Chow and L. Wieczorek, “Gold Nanoparticle Chemiresistor Sensors in Aqueous Solution: Comparison of Hydrophobic and Hydrophilic Nanoparticle Films”, J. Phys. Chem. C, 113 (34), (2009).
[9] J. S. Cooper, B. Raguse, E. Chow, L. Hubble, Karl-Heinz Müller and L. Wieczorek, “Gold Nanoparticle Chemiresistor Sensor Array that Differentiates between Hydrocarbon Fuels Dissolved in Artificial Seawater”, Anal. Chem., 82 (9), pp 3788–3795, (2010).
[10] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive Chemical Analysis by Raman Spectroscopy”, Chem. Rev., 99 (10), pp 2957–2976, (1999).
[11] O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids”, Nano Letters, 2 (12), pp 1449–1452, (2002).
[12] D. Y. Lei, J. Li, and H. C. Ong, “Tunable surface plasmon mediated emission from semiconductors by using metal alloys”, Appl. Phys. Lett. 91, 021112, (2007).
[13] C. D. Geddes, J. R. Lakowicz, “Metal-Enhanced Fluorescence”, Journal of Fluorescence, John Wiley & Sons, Inc, New York, 12, (2010).
[14] V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters”, Chem. Rev., 111 (6), pp 3888–3912, (2011).
[15] R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, and A. K. Pradhan, “Surface plasmon excitation via Au nanoparticles in n-CdSe∕p-Si heterojunction diodes”, Appl. Phys. Lett. 91, 191111, (2007).
[16] C. Hägglund1, M. Zäch1, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons”, Appl. Phys. Lett. 92, 053110, (2008).
[17] M. O. Stetsenko, S. P. Rudenko, L. S. Maksimenko, B. K. Serdega, O. Pluchery and S. V. Snegir, “Optical Properties of Gold Nanoparticle Assemblies on a Glass Surface”, Nanoscale Res Lett., 12(1):348. (2017).
[18] S. Mubeen, S. Zhang, N.Kim, S. Lee, S. Krämer, H. Xu, and M. Moskovits, “Plasmonic Properties of Gold Nanoparticles Separated from a Gold Mirror by an Ultrathin Oxide”, Nano Lett., 12 (4), pp 2088–2094, (2012).
[19] J. J. Mock, R. T. Hill, Yu-Ju Tsai, A. Chilkoti, and D. R. Smith, “Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation”, Nano Lett., 12 (4), pp 1757–1764, (2012).
[20] D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund Jr., J. B. Pendry, and S. A. Maier, “Revealing Plasmonic Gap Modes in Particle-on-Film Systems Using Dark-Field Spectroscopy”, ACS Nano, 6 (2), pp 1380–1386, (2012).
[21] J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene”, Nano Lett., 13 (11), pp 5033–5038, (2013).
[22] J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti and D. R. Smith, “Distance-Dependent Plasmon Resonant Coupling between a Gold Nanoparticle and Gold Film”, Nano Lett., 8 (8), pp 2245–2252, (2008).
[23] 洪士傑,“由分子控制金奈米粒子與金薄膜間隙以觀察其電漿子耦合效應”,國立東華大學應用物理研究所碩士論文,2014年。
[24] Z. Zhong, S. Patskovskyy, P. Bouvrette, J. H. T. Luong, and A. Gedanken, “The Surface Chemistry of Au Colloids and Their Interactions with Functional Amino Acids”, J. Phys. Chem. B, 108 (13), pp 4046–4052, (2004).
[25] H, Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings”, Springer Tracts in Modern Physics III, Springer, 1988.
[26] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity”, Phys. Rev. Lett. 84, 4184, (2000).
[27] R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films”, Phys. Rev. 106, 874, (1957).
[28] R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-Plasmon Resonance Effect in Grating Diffraction”, Phys. Rev. Lett. 21, 1530, (1968).
[29] A. Otto, Z. Physik 216, 410 (1968)
[30] E. Kretschmann and H. Raether, Z. Naturforschung A 23, 2135 (1968).
[31] J. Zhang, L. Zhang and W. Xu , “Surface plasmon polaritons: physics and applications”, Journal of Physics D: Applied Physics, Volume 45, Number 11, (2012).
[32] 吳民耀、劉威志,“表面電漿子理論與模擬”,物理雙月刊(廿八卷二期),2006年。
[33] Dijk, A. Meindert, “Nonlinear optical studies of single gold nanoparticles”, (2007).
[34] P. K. Jain and M. A. El-Sayed, “Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing”, Nano Lett., 8 (12), pp 4347–4352, (2008).
[35] K.-H. Su, Q.-H. Wei, and X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles”, Nano Letters, 3 (8), pp 1087–1090, (2003).
[36] M. Hu, A. Ghoshal, M. Marquez and P. G. Kik, “Single Particle Spectroscopy Study of Metal-Film-Induced Tuning of Silver Nanoparticle Plasmon Resonances”, J. Phys. Chem. C, 114 (16), pp 7509–7514, (2010).
[37] J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti and D. R. Smith, “Distance-Dependent Plasmon Resonant Coupling between a Gold Nanoparticle and Gold Film”, Nano Lett., 8 (8), pp 2245–2252, (2008).
[38] T. Okamoto, and I. Yamaguchi, “Optical Absorption Study of the Surface Plasmon Resonance in Gold Nanoparticles Immobilized onto a Gold Substrate by Self-Assembly Technique”, J. Phys. Chem. B, 107 (38), pp 10321–10324, (2003).
[39] J. J. Mock, R. T. Hill, Yu-Ju Tsai, A. Chilkoti, and D. R. Smith, “Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation”, Nano Lett., 12 (4), pp 1757–1764, (2012).
[40] S. Mubeen, S. Zhang, N.Kim, S. Lee, S. Krämer, H. Xu, and M. Moskovits, “Plasmonic Properties of Gold Nanoparticles Separated from a Gold Mirror by an Ultrathin Oxide”, Nano Lett., 12 (4), pp 2088–2094, (2012).
[41] J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling Subnanometer Gaps in Plasmonic Dimers Using Graphene”, Nano Lett., 13 (11), pp 5033–5038, (2013).
[42] D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund Jr., J. B. Pendry, and S. A. Maier, “Revealing Plasmonic Gap Modes in Particle-on-Film Systems Using Dark-Field Spectroscopy”, ACS Nano, 6 (2), pp 1380–1386, (2012).
[43] 郭清癸、黃俊傑、牟中原,“金屬奈米粒子的製造”,物理雙月刊(廿三卷六期),2001年。
[44] T. P. Cassagneau, “Colloids and Colloid Assemblies”, Wiley-VCH, (2004)
[45] J. W. Slot, H. J. Geuze, “A new method of preparing gold probes for multiple-labeling cytochemistry”, European Journal of Cell Biology. 38, 87-93, (1985).
[46] 楊素卿,“利用離心法製作金奈米顆粒薄膜探討其形成與顆粒間交互作用的關係”,國立東華大學應用物理研究所碩士論文,2010年。
[47] I-Chi Ni, Su-Ching Yang, Cheng-Wei Jiang, Chih-Shin Luo, Watson Kuo, Kuan-Jiuh Lin, and Shien-Der Tzeng, “Formation Mechanism, Patterning, and Physical Properties of Gold-Nanoparticle Films Assembled by an Interaction-Controlled Centrifugal Method”, J. Phys. Chem. C, 116 (14), pp 8095–8101, (2012).
[48] 倪懿池,“金奈米粒子薄膜的二維、三維組裝與物理性質”, 國立東華大學應用物理研究所碩士論文,2010年。
[49] Z. Jingdong, B. Ante. R. R. Jeffrey, S. H. Noel, “Coexistence of Multiple Conformations in Cysteamine Monolayers on Au(111)”, J. Phys. Chem. B 109, 15355-15367, (2005).
[50] T. Masamitsu, Y. Kazunari, O. Atsushi, F. Hiroshi, H. Roald, “Sulfur-Gold Orbital Interactions which Determine the Structure of Alkanethiolate/Au(111) Self-Assembled Monolayer Systems”, J. Phys. Chem. B 106, 12727-12736, (2002).
[51] C. F. Chen, S. D. Tzeng, H.Y. Chen, K. J. Lin, S. Gwo, “Tunable Plasmonic Response from Alkanethiolate-Stabilized Gold Nanoparticle Superlattices: Evidence of Near-Field Coupling”, J. Am. Chem. Soc., 130 (3), pp 824–826,(2008).
[52] D. W. Lynch, “Handbook of Optical Constants of Solids”, Orlando, FL: Academic Press, (1985).
[53] A. Taflove, S. C. Hagness, Computational Electrodynamics: “The finite-Difference Time-Domain Method”, Boston, MA: Artech House, (2005).
[54] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices”, Applied Optics Vol. 37, Issue 22, pp. 5271-5283, (1998).
[55] M. L. The`ye, “Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films”, Phys. Rev. B 2, 3060-3078, (1970).
[56] 李秉宇,“金奈米粒子和金薄膜不同間隙的電漿子耦合效應”,國立臺灣海洋大學光電科學研究所碩士論文,2015年。
[57] J. J. Mock, R. T. Hill, Yu-Ju Tsai, A. Chilkoti, and D. R. Smith, “Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation”, Nano Lett., 12 (4), pp 1757–1764, (2012).
[58] 羅正忠、張鼎張(譯),半導體製程技術導論。台北市:歐亞書局,2001年。(H. Xiao,“Introduction to Semiconductor Manufacturing Technology” Prentice-Hall, New Jersey,2001.)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔