跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張台奇
研究生(外文):Tai-Chi Chang
論文名稱:培養系統、光強度和流速對藍綠肉質軟珊瑚生理表現的影響
論文名稱(外文):Effects of culture system, light intensity and flow velocity on physiological performance of soft coral, Sarcophyton glaucum
指導教授:樊同雲樊同雲引用關係
指導教授(外文):Tung-Yung Fan
口試委員:劉弼仁劉莉蓮樊同雲
口試委員(外文):Pi-Jen LiuLi-Lian LiuTung-Yung Fan
口試日期:2019-7-19
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:51
中文關鍵詞:光強度流速循環式系統流水式系統藍綠肉質軟珊瑚
外文關鍵詞:light intensityflow velocityrecirculating aquaculture systemflow-through systemSarcophyton glaucum
相關次數:
  • 被引用被引用:1
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:1
異地珊瑚水產養殖的成效會受培養系統、光強度及流速的影響,本研究在三種培養系統中((1) RAS-B:合成海水的循環式系統並且沒有添加微生物菌群;(2) RAS+B:合成海水的循環式系統,移除蛋白除沫器,並加入活岩石,及分離進行異營餵食浮游植物營養液;(3) FT:天然海水的流水式系統),分別進行光強度(PAR, 100及200 μmol quanta m−2 s−1)和流速(5及15 cm s−1)對藍綠肉質軟珊瑚(Sarcophyton glaucum)生理表現影響的實驗。珊瑚全部存活,並且最大量子產率都在正常範圍。在RAS-B內,浮力重量的特定生長速率受到光強度和流速的影響,頭冠部直徑改變率受到光強度的影響;在RAS+B內,生理參數不受光強度和流速的影響;在FT內,特定生長速率受到光強度和流速的影響,頭冠部直徑改變率、有機質重量百分比受到流速的影響,且頭冠部直徑改變率和特定生長速率與有機質重量百分比呈正相關。因此建議未來結合循環式系統及天然海水,在可控制環境條件下培養可預測生長參數的珊瑚。
The quality of ex-situ coral aquaculture is affected by culture system, light intensity and flow velocity. This study tested the effect of three different types of systems ((1) RAS-B : used synthetic seawater within a recirculating aquaculture system, no additional microbial flora (2) RAS+B : used synthetic seawater within a recirculating aquaculture system, but without a protein skimmer and incorporated the addition of live rock and supplemental feeding phytoplankton nutrient solution (3) FT : used natural seawater within a flow-through system) on the physiological performance of the soft coral, Sarcophyton glaucum. In each system the effect of two levels of light intensity (PAR; 100 and 200 μmol quanta m−2 s−1) and flow velocity (5 and 15 cm s−1) on coral physiology was assessed. Corals across each of the systems had normal values of maximum quantum yield (Fv/Fm) and no mortality was observed over the course of the study. In RAS-B, the specific growth rate is affected by light intensity and flow velocity, and the oral disc diameter change rates is affected by light intensity. In RAS+B, physiological parameters are not affected by light intensity and flow velocity. In FT, the specific growth rate is affected by the light intensity and flow velocity. The oral disc diameter change rates and organic weight (%) are affected by flow velocity, and the oral disc diameter change rates is positively correlated with the specific growth rate and organic weight (%). Therefore, it is recommended to combine RAS with natural seawater in the future to cultivate predictable growth parameters under controlled environmental conditions.
壹、前言 1
貳、材料與方法 5
2.1 實驗物種及採樣地點 5
2.2 珊瑚斷片製作 5
2.3 培養系統配置、實驗流程、系統維護 6
2.4 光強度、流速、珊瑚斷片配置 7
2.5 珊瑚特定生長速率 7
2.6 珊瑚頭冠部直徑改變率、基部直徑、柱部高度 8
2.7 珊瑚顏色 8
2.8 珊瑚最大量子產率 9
2.9 珊瑚有機質重量百分比 9
2.10 統計分析 9
參、結果 11
3.1 系統水質參數 11
3.2 珊瑚特定生長速率 11
3.3 珊瑚頭冠部直徑改變率、基部直徑、柱部高度 12
3.4 珊瑚顏色 14
3.5 珊瑚最大量子產率 14
3.6 珊瑚有機質重量百分比 15
3.7 頭冠部直徑改變率和特定生長速率、有機質重量百分比的相關性 15
肆、討論 17
伍、參考文獻 23
戴昌鳳、秦啟翔(2018)。東沙八放珊瑚生態圖鑑。內政部營建署海洋國家公園管理處。
Al-Horani, F., Tambutté, É., & Allemand, D. (2007). Dark calcification and the daily rhythm of calcification in the scleractinian coral, Galaxea fascicularis. Coral Reefs, 26(3), 531-538.
Anthony, K. R., Connolly, S. R., & Willis, B. L. (2002). Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnology and Oceanography, 47(5), 1417-1429.
Badria, F. A., Guirguis, A. N., Perovic, S., Steffen, R., Müller, W. E., & Schröder, H. C. (1998). Sarcophytolide: A new neuroprotective compound from the soft coral Sarcophyton glaucum. Toxicology, 131(2-3), 133-143.
Bartlett, T. C. (2013). Small scale experimental systems for coral research: Considerations, planning, and recommendations. NOAA Technical Memorandum NOS NCCOS 165 CRCP 18. 2013; 68 pp
Barton, J. A., Willis, B. L., & Hutson, K. S. (2017). Coral propagation: a review of techniques for ornamental trade and reef restoration. Reviews in Aquaculture, 9(3), 238-256. doi:10.1111/raq.12135
Bik, H. M., Alexiev, A., Aulakh, S. K., Bharadwaj, L., Flanagan, J., Haggerty, J. M., Hird, S. M., Jospin, G., Lang, J. M., Sauder, L. A. (2019). Microbial community succession and nutrient cycling responses following perturbations of experimental saltwater Aquaria. mSphere, 4(1), e00043-00019.
Bourne, D. G., Garren, M., Work, T. M., Rosenberg, E., Smith, G. W., & Harvell, C. D. (2009). Microbial disease and the coral holobiont. Trends in Microbiology, 17(12), 554-562.
Brown, B., & Bythell, J. (2005). Perspectives on mucus secretion in reef corals. Marine Ecology Progress Series, 296, 291-309.
Brown, B., & Dunne, R. (2008). Solar radiation modulates bleaching and damage protection in a shallow water coral. Marine Ecology Progress Series, 362, 99-107.
Bryce, M., Radford, B., & Fabricius, K. (2018). Soft coral and sea fan (Octocorallia) biodiversity and distribution from a multi-taxon survey (2009–2014) of the shallow tropical Kimberley, Western Australia. Records of The Western Australian Museum, 45, 073.
Chaitanawisuti, N., & Kritsanapuntu, S. (2019). Asexual propagation of the soft corals Sinularia sp., Cladiella sp. and Sarcophyton sp. (Octocorallia: Alcyonacea) using different methods of attachment in a recirculating seawater system. Aquaculture Research, 50(8), 2047-2053. doi:10.1111/are.14067
Chang, W.-L., Chi, K.-J., Fan, T.-Y., & Dai, C.-F. (2007). Skeletal modification in response to flow during growth in colonies of the sea whip, Junceella fragilis. Journal of Experimental Marine Biology and Ecology, 347(1-2), 97-108.
Chao, C. H., Li, W. L., Huang, C. Y., Ahmed, A. F., Dai, C. F., Wu, Y. C., Lu, M. C., Liaw, C. C., Sheu, J. H. (2017). Isoprenoids from the Soft Coral Sarcophyton glaucum. Marine Drugs, 15(7). doi:10.3390/md15070202
Cohen, I., Dubinsky, Z., & Erez, J. (2016). Light enhanced calcification in hermatypic corals: New insights from light spectral responses. Frontiers in Marine Science, 2. doi:10.3389/fmars.2015.00122
Costa, A. P. L., Calado, R., Marques, B., Lillebø, A. I., Serôdio, J., Soares, A. M. V. M., Serrão, E, A., Rocha, R. J. M. (2016). The effect of mixotrophy in the ex situ culture of the soft coral Sarcophyton cf. glaucum. Aquaculture, 452, 151-159. doi:10.1016/j.aquaculture.2015.10.032
Fabricius, K. E. (1995). Slow population turnover in the soft coral genera Sinularia and Sarcophyton on mid-and outer-shelf reefs of the Great Barrier Reef. Marine Ecology Progress Series, 126, 145-152.
Falkowski, P. G., Dubinsky, Z., Muscatine, L., & Porter, J. W. (1984). Light and the bioenergetics of a symbiotic coral. Bioscience, 34(11), 705-709.
Ferrier-Pagès, C., Rottier, C., Beraud, E., & Levy, O. (2010). Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: Effect on the rates of photosynthesis. Journal of Experimental Marine Biology and Ecology, 390(2), 118-124.
Goldberg, W. M. (2018). Coral food, feeding, nutrition, and secretion: A Review. In Marine Organisms as Model Systems in Biology and Medicine (pp. 377-421): Springer.
Graham, N. A. J., & Nash, K. L. (2012). The importance of structural complexity in coral reef ecosystems. Coral Reefs, 32(2), 315-326. doi:10.1007/s00338-012-0984-y
Grottoli, A. G., Rodrigues, L. J., & Palardy, J. E. (2006). Heterotrophic plasticity and resilience in bleached corals. Nature, 440(7088), 1186.
Hellström, M., & Benzie, J. (2011). Robustness of size measurement in soft corals. Coral Reefs, 30(3), 787.
Houlbrèque, F., & Ferrier‐Pagès, C. (2009). Heterotrophy in tropical scleractinian corals. Biological Reviews, 84(1), 1-17.
Houlbrèque, F., Tambutté, E., Allemand, D., & Ferrier-Pagès, C. (2004). Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. Journal of Experimental Biology, 207(9), 1461-1469.
Khalesi, M. K., Beeftink, H. H., & Wijffels, R. H. (2007). Flow-dependent growth in the zooxanthellate soft coral Sinularia flexibilis. Journal of Experimental Marine Biology and Ecology, 351(1-2), 106-113. doi:10.1016/j.jembe.2007.06.007
Khalesi, M. K., Beeftink, H. H., & Wijffels, R. H. (2009). Light-dependency of growth and secondary metabolite production in the captive zooxanthellate soft coral Sinularia flexibilis. Marine Biotechnol (NY), 11(4), 488-494. doi:10.1007/s10126-008-9164-z
Kloc, M., & Kubiak, J. Z. (2018). Marine Organisms as Model Systems in Biology and Medicine (Vol. 65): Springer.
Kooperman, N., Ben-Dov, E., Kramarsky-Winter, E., Barak, Z., & Kushmaro, A. (2007). Coral mucus-associated bacterial communities from natural and aquarium environments. FEMS Microbiology Letters, 276(1), 106-113. doi:10.1111/j.1574-6968.2007.00921.x
Kvennefors, E. C. E., Sampayo, E., Kerr, C., Vieira, G., Roff, G., & Barnes, A. C. (2012). Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microbial Ecology, 63(3), 605-618.
Leal, M. C., Calado, R., Sheridan, C., Alimonti, A., & Osinga, R. (2013). Coral aquaculture to support drug discovery. Trends in Biotechnology, 31(10), 555-561. doi:10.1016/j.tibtech.2013.06.004
Leal, M. C., Ferrier-Pagès, C., Petersen, D., & Osinga, R. (2016). Coral aquaculture: applying scientific knowledge toex situproduction. Reviews in Aquaculture, 8(2), 136-153. doi:10.1111/raq.12087
Leal, M. C., Puga, J., Serodio, J., Gomes, N. C., & Calado, R. (2012). Trends in the discovery of new marine natural products from invertebrates over the last two decades--where and what are we bioprospecting? PLoS One, 7(1), e30580. doi:10.1371/journal.pone.0030580
Ne'Eman, I., Fishelson, L., & Kashman, Y. (1974). Sarcophine—a new toxin from the soft coral Sarcophyton glaucum (Alcyonaria). Toxicon, 12(6), 593-IN596.
Oxborough, K., & Baker, N. R. (1997). Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components–calculation of qP and Fv-/Fm-; without measuring Fo. Photosynthesis Research, 54(2), 135-142.
Piccinetti, C. C., Ricci, R., Pennesi, C., Radaelli, G., Totti, C., Norici, A., Giordano, M., Olivotto, I. (2016). Herbivory in the soft coral Sinularia flexibilis (Alcyoniidae). Scientific Reports, 6, 22679.
Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J., & Wild, C. (2015). Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends in Microbiology, 23(8), 490-497.
Rahman, M., Kadowaki, S., Linn, S., & Yamada, Y. (2012). Effects of protein skimming on water quality, bacterial abundance and abalone growth in land based recirculating aquaculture systems. Fisheries and Aquatic Science, 7, 150-161.
Rakocy, J. E., Masser, M., & Losordo, T. (2006). Recirculating aquaculture tank production systems: Aquaponics-Integrating fish and plant culture. SRAC Publication, 454.
Rocha, J., Peixe, L., Gomes, N. C., & Calado, R. (2011). Cnidarians as a source of new marine bioactive compounds--an overview of the last decade and future steps for bioprospecting. Marine Drugs, 9(10), 1860-1886. doi:10.3390/md9101860
Rocha, R. J. M., Bontas, B., Cartaxana, P., Leal, M. C., Ferreira, J. M., Rosa, R., Serôdio, J., Calado, R. (2015). Development of a Standardized Modular System for Experimental Coral Culture. Journal of the World Aquaculture Society, 46(3), 235-251. doi:10.1111/jwas.12186
Rocha, R. J. M., Calado, R., Cartaxana, P., Furtado, J., & Serôdio, J. (2013). Photobiology and growth of leather coral Sarcophyton cf. glaucum fragments stocked under low light in a recirculated system. Aquaculture, 414-415, 235-242. doi:10.1016/j.aquaculture.2013.08.018
Rocha, R. J. M., Serôdio, J., Leal, M. C., Cartaxana, P., & Calado, R. (2013). Effect of light intensity on post-fragmentation photobiological performance of the soft coral Sinularia flexibilis. Aquaculture, 388-391, 24-29. doi:10.1016/j.aquaculture.2013.01.013
Salih, A., Larkum, A., Cox, G., Kühl, M., & Hoegh-Guldberg, O. (2000). Fluorescent pigments in corals are photoprotective. Nature, 408(6814), 850.
Sella, I., & Benayahu, Y. (2010). Rearing cuttings of the soft coral Sarcophyton glaucum (Octocorallia, Alcyonacea): towards mass production in a closed seawater system. Aquaculture Research, 41(12), 1748-1758. doi:10.1111/j.1365-2109.2009.02475.x
Siebeck, U., Marshall, N., Klüter, A., & Hoegh-Guldberg, O. (2006). Monitoring coral bleaching using a colour reference card. Coral Reefs, 25(3), 453-460.
Southgate, P. C., & Lucas, J. S. (2019). Principles of Aquaculture. In Aquaculture: farming aquatic animals and plants. 3rd edition (pp. 19-40): John Wiley & Sons Ltd.
Tentori, E., & Allemand, D. (2006). Light-enhanced calcification and dark decalcification in isolates of the soft coral Cladiella sp. during tissue recovery. The Biological Bulletin, 211(2), 193-202.
Tentori, E., & van Ofwegen, L. P. (2011). Patterns of distribution of calcite crystals in soft corals sclerites. Journal of Morphology, 272(5), 614-628.
Theodorsson-Norheim, E. (1986). Kruskal-Wallis test: BASIC computer program to perform nonparametric one-way analysis of variance and multiple comparisons on ranks of several independent samples. Computer Methods and Programs in Biomedicine, 23(1), 57-62.
Thompson, J. R., Rivera, H. E., Closek, C. J., & Medina, M. (2015). Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Frontiers in Cellular and Infection Microbiology, 4, 176.
Titlyanov, E., Bil, K., Fomina, I., Titlyanova, T., Leletkin, V., Eden, N., Malkin, A., Dubinsky, Z. (2000). Effects of dissolved ammonium addition and host feeding with Artemia salina on photoacclimation of the hermatypic coral Stylophora pistillata. Marine Biology, 137(3), 463-472.
Wabnitz, C. (2003). From ocean to aquarium: the global trade in marine ornamental species: UNEP/Earthprint.
Watson, C. A., & Hill, J. E. (2006). Design criteria for recirculating, marine ornamental production systems. Aquacultural Engineering, 34(3), 157-162.
Yuen, Y. S., Yamazaki, S. S., Nakamura, T., Tokuda, G., & Yamasaki, H. (2009). Effects of live rock on the reef-building coral Acropora digitifera cultured with high levels of nitrogenous compounds. Aquacultural Engineering, 41(1), 35-43.
Zhang, S.-Y., Li, G., Wu, H.-B., Liu, X.-G., Yao, Y.-H., Tao, L., & Liu, H. (2011). An integrated recirculating aquaculture system (RAS) for land-based fish farming: The effects on water quality and fish production. Aquacultural Engineering, 45(3), 93-102.
Zucker, B., Simillis, C., Tekkis, P., & Kontovounisios, C. (2018). Suture choice to reduce occurrence of surgical site infection, hernia, wound dehiscence and sinus/fistula: a network meta-analysis. The Annals of The Royal College of Surgeons of England, 101(3), 150-161.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top