王琬怡(2013)。網銀形象、知覺易用性與知覺有用性對網銀態度及網銀使用意圖影響之研究-以使用經驗作為干擾變數。未出版之碩士論文,淡江大學,新北市。吳亞馨、朱素玥、方文昌(2008)。網路購物信任與科技接受模式之實證研究。資訊管理學報。15(1),123-152。
李淑華(2014)。淺析我國NFC行動支付發展現況。臺灣經濟研究月刊,37(10),121-127。
杜庭瑜(2017)。以科技接受模式探討消費者使用行動支付意圖之研究—電子錢包為例。未出版之碩士論文,東吳大學,台北市。林榮春、邱天佑、林茂雄(2011)。影響網路銀行實際使用行為之研究。顧客滿意學刊,7(1),1-22。
林耀南、邱琦倫、林佳穎(2010)。消費者創新性、物質主義、消費者自信心與價格敏感度之關聯性研究。創造學刊,1(2),97-118。
洪長宏(2014)。QR code應用在行動設備之網路交易上的資通安全探討。電腦稽核,30,65-71。
胡利貞、武為棣(2017)。探討消費者對於餐飲市場使用行動支付APP接受因子之研究。未出版之碩士論文,國立中興大學,台中市。孫仲山、 趙育玄、劉金泉(2004)。科技工具知覺、使用態度、及使用行為意圖分析。高雄師大學報,17,21-35。
張宗榮(2012)。以整合科技接受模式及沉浸理論探討 App 之使用行為模式-以行動社群 App 為例。未出版之碩士論文,國立台中教育大學 台中市。張家銘、蘇智鈴、曾明郎、呂宗元(2014)。科技接受模式影響大學生網路購買運動商品行為。運動休閒餐旅研究,9(2),2014
張瑞琇及江睿盈(2017)。應用科技接受模式探討顧客價值、知覺風險及使用意願之關係-以星巴克的行動支付為例。休閒事業研究,15(2),36-54
張祺竟(2016)。以科技接受模式探討消費者使用行動支付之意願。未出版之碩士論文,義守大學,高雄市。張馨文(2007)。影響消費者採用近端行動交易意願因素之研究。未出版之碩士論文,國立成功大學,台南市。許庭毓(2008)。影響使用行動社群服務採用因素之初探-以台灣為例。未出版之碩士論文,國立台灣科技大學,台北市。陳姿蓉、黃仁宏(2013)。以科技接受模式探討消費者使用QR Code行動支付的行為意圖。未出版之碩士論文,國立交通大學,新竹市。粟四維及莊友豪(2009)。Wiki使用者與使用行為之研究。電子商務學報,11(1),185-212。
詹舒萍、陳光華(2015)。以科技接受模型探討知覺風險影響台北市消費者對NFC―行動支付之使用意圖研究。未出版之碩士論文,國立交通大學,新竹市。趙德蘭(2017)。以科技接受模式探討 TED App 使用意圖。未出版之碩士論文,國立高雄應用科技大學,高雄市。鍾佩君、曾薏珊(2010)。從創新傳佈觀點探討電子閱\讀採用意願因素分析-以Mag V線上電子閱\讀網為例。2010中華傳播學會年會暨第四屆數位傳播國際學術研討會。嘉義:中正大學。
Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information systems research, 9(2), 204-215.
Ajzen, I. (1991). The Theory of Planned Behavior, Organizational Behavior and Human Decision Processes, 50, 179-211
Ajzen, I. (1985), From intentions to actions: A theory of planned behavior. springer verlag, New York.
Bank for International Settlements. (2012). Innovations in retail payments. Committee on Payment and Settlement Systems.
Bentler, P. M. & Bonett, D. G. (1980). Significance tests and goodness-of –fit in the analysis of covariance structures. Psychological Bulletin, 88, 588-606.
Browne, M.W. and Cudeck, R. (1993). Alternative ways of assessing model fit. In: K.A.,Bollen, J.S. Long, Eds. Testing structural equation models, 136–162.
Burnham, T. A., Frels, J. K. and Mahajan, V. (2003). Consumer Switching Costs: ATypology, Antecedents, and Consequence. Journal of the Academy of Marketing Science, 31(2), 109-126.
Capgemini, BNP Paribas. (2018). World Payments Report 2018.
Davis, F. D. (1985). A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results. Doctoral dissertation, Sloan School of Management, Massachusetts Institute of Technology.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly, 13(3),319–340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1002.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003.
Doll, W. J., Xia, W., & Torkzadeh, G. (1994). A Confirmatory Factor Analysis of the End-User Computing Satisfaction Instrument. MIS Quarterly, 12(2), 259-274.
eMarketer. (2018). GLOBAL PROXIMITY MOBILE PAYMENT USERS-China and India Lead the Way in Usage for 2019.
Fan, X., Thompson, B., & Wang, L. (1999). Effects of sample size, estimation method, and model specification on structural equation modeling fit indexes. Structural Equation Modeling, 6, 56-83.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.
Fornell, C. & D. F. Larcker. (1981). Evaluating Structural Equation Models with UnobservableVariables and Measurement Errors. Journal of Marketing Research, 28, 39-50.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (6th ed.). New Jersey: Prentice-Hall.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.
Kapil, K., Nikunj K.J., & Alok K.S. (2018). Antecedents and outcomes of information privacy concerns: Role of subjective norm and social presence. Electronic Commerce Research and Applications, 32, 57-68.
Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factorsinfluencing the intention to use mobile payment. Comput. Hum. Behav, 26(3), 310–322.
Kirton, M. J. (1976). Adaptors and innovators: A description and measure. Journal of Applied Psychology, 61(5), 623.
Lederer, A.L., Maupin, D.J., Sena, M.P., & Zhuang, Y., (2000). The technology acceptance model and the World Wide Web. Decis. Support Syst. 29(3), 269–282.
Liang, C. (2016). Subjective norms and customer adoption of mobile banking: Taiwan and vietnam. In 2016 49th Hawaii International Conference on System Sciences (HICSS), 1577–1585.
Liébana-Cabanillas, F., Ramos de Luna, I., & Montoro-Ríos, F.J. (2015). User behaviour in QR mobile payment system: the QR Payment Acceptance Model. Technol. Anal. Strategic Manage, 27 (9), 1031–1049
Lu, J., Yao, J.E., & Yu, C.S. (2005). Personal innovativeness, social influences and adoption of wireless internet services via mobile technology. Journal of Strategic Information Systems, 14(4), 245-68.
Luna, I.R. de, Montoro-Ríos, F., Liébana-Cabanillas, F. (2016). Determinants of theintention to use NFC technology as a payment system: an acceptance modelapproach. Inf. Syst. E-Bus. Manage. 14(2), 293–314.
Martens, M., Roll, O., & Elliott, R. (2017). Testing the technology readiness and acceptance model for mobile payments across Germany and SouthAfrica. International Journal of Innovation and Technology Management, 14(6).doi:10.1142/S021987701750033X.
McDonald, R. P., & Ho, M. R. (2002). Principles and practice in reporting structural equation analysis. Psychological methods, 7, 64-82.
Mulaik, S.A., James, L. R., Van Altine, J., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of Goodness-of-Fit Indices for Structural Equation Models. Psychological Bulletin, 105, 430-445.
Nasri, W., & Charfeddine, L. (2012). Factors affecting the adoption of internet banking in Tunisia: An integration theory of acceptance model and theory of planned behavior. The Journal of High Technology Management Research, 23(1), 1–14.
Nunnally, J.C. (1978). Psychometric Theory. New York: McGraw-Hill.
OC Otieno., S Liyala., BC Odongo., S Abeka., & S Ogara. (2018). Validation of Extended Theory of Reasoned Action to Predict Mobile Phone Money Usage. World Journal of Computer Application and Technology ,6(1), 1-13
Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: understanding the determinants of customer adoption and intention to recommend thetechnology. Comput. Hum. Behav. 61, 404–414.
Pham, T.T.T., & Ho, J.C. (2015). The effects of product-related, personal-related factors andattractiveness of alternatives on consumer adoption of NFC-based mobile payments. Technol. Soc. 43, 159–172.
Pikkarainen, T., Pikkarainen, K., Karijaluoto, H. & Pahnila, S. (2004). Customer acceptance of on-line banking: an extension of the technology acceptance model. Internet Research, 3, 224-235.
Pousttchi, K. (2003). Conditions for Acceptance and Usage of Mobile Payment Procedures. mBusiness 2003 – The Second International Conference on Mobile Business Vienna 2003, 201-210.
Ramayah, T., & Ignatius, J. (2005). Impact of perceived usefulness, perceived ease of use and perceived enjoyment on intention to shop online. ICFAI Journal of Systems Management, 3(3), 36-51.
Rogers, E. M., & Shoemaker, F. F. (1971). Communication and innovation. New York, NY: Free Press.
Rogers, E.M. (1983). Diffusion of innovations. New York: The Free Press.
Schumacker, R. E., & Lomax, R. G. (2004). A beginner’s guide to structural equation modeling. New Jersey: Lawrence Erlbaum Associates.
Slade, E.L., Dwivedi, Y.K., Piercy, N.C., & Williams, M.D. (2015). Modeling Consumers’ Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending UTAUT with Innovativeness, Risk, and Trust. Psychol. Mark, 32(8), 860–873
Taylor, S., & Todd, P. A. (1995). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19(4), 561-57
Ting, H., Yacob, Y., Liew, L., & Lau, W.M. (2016). Intention to use mobile payment system: A case of developing market by ethnicity. Procedia-Social and Behavioral Sciences, 224(15), 368-375.
Ullman, J. B. (2001). Structural equation modeling. Needham Heights, MA: Allyn & Bacon.
Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451-481
Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science 46(2), 186-20.
Wu, J. H., & Wang, S. C. (2005). What drives mobile commerce? An empirical evaluation of the revised technology acceptance model. Information & Management, 42(5), 719–729
Yang, S., Lu, Y., Gupta, S., Cao, Y., & Zhang, R. (2012). Mobile payment services adoption across time: an empirical study of the effects of behavioral beliefs, social influences, and personal traits. Comput. Hum. Behav. 28 (1), 129–142.
Yu, C.S. (2008). Adoption and Adoption Continuance of Online Banking. Journal of E-Business, 10(4), 1067-1106
全國法規資料庫(107)。電子票證發行管理條例。取自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=G0380207。
胡自立(2015年03月24日)。行動支付市場驅動因素與趨勢剖析。取自https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=10
財團法人臺灣網路資訊中心(2019年02月20日)。2018 台灣網路報告。取自: https://report.twnic.tw/2018/TWNIC_TaiwanInternetReport_2018_CH.pdf
資策會產業情報研究所(2019年01月04日)。【行動支付大調查】消費者愛好排名變動本土業者成長幅度最大。取自:https://mic.iii.org.tw/IndustryObservations_PressRelease02.aspx?sqno=504。