(100.26.179.251) 您好!臺灣時間:2021/04/15 17:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:魏頌讚
研究生(外文):WEI, SUNG-CHAN
論文名稱:桿狀病毒IE2經由Daxx與病毒DNA互動形成組織嚴密的核內結構體以活化基因表現之機制的研究
論文名稱(外文):Baculovirus IE2 interacts with viral DNA through Daxx to generate an organized nuclear body structure for gene activation
指導教授:趙裕展
指導教授(外文):CHAO,YU-CHAN
口試委員:陳律佑施嘉和吳宗遠吳岳隆
口試委員(外文):CHEN, LIUH-YOWSHIH, CHIAHOWU, TZONA-YUANWU, YUEH-LUNG
口試日期:2019-03-07
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:107
中文關鍵詞:昆蟲桿狀病毒Daxx
外文關鍵詞:BaculovirusDaxx
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當病毒感染細胞後,病毒所釋出的DNA通常被細胞核內的宿主內源性免疫反應所阻斷。然而病毒入侵細胞時,對於病毒如何抵抗宿主內源性免疫系統的限制,並找到自身基因活化轉錄,及如何成功建立病毒基因體複製中心等重要議題仍然所知甚少。在本研究中,我們發現當桿狀病毒轉導進入Vero E6細胞後,入侵的病毒DNA被細胞核內的內源性免疫蛋白:死亡結構域相關蛋白(Daxx)及組蛋白H3.3在細胞核中的共同作用,限制基因表現,進而導致基因失活。 IE2是一種桿狀病毒轉活化因子,通過IE2蛋白上面的 SUMO作用序列(SIM)定向結合宿主Daxx,使得病毒DNA釋出,並形成謹密的核內結構體,我們稱之為核內籠狀結構體(CCLA)。在轉導後期階段,CCLAs逐漸擴大,IE2持續與病毒DNA緊密相互作用,並將Daxx蛋白排除在外。IE2需要與Daxx結合才能形成CCLA,接著漸次擴大的CCLA能夠進一步選擇性的增強病毒DNA的表現而不表達宿主DNA。我們的研究發現,桿狀病毒IE2通過抵抗Daxx和H3.3並有效地與病毒DNA結合來抵消細胞的相關內源性免疫反應。然後,IE2可透過此種與病毒DNA的結合來建立獨特的CCLA結構,這是一個可在光學顯微鏡下觀察的微小細胞奈米機器,而這機器可形成一個封閉的系統以大量表達病毒的基因產物。
Upon virus infection of a cell, the uncoated DNA is usually blocked by the host intrinsic immune system inside the nucleus. Although it is crucial for the virus to counteract the host intrinsic immune system and access its genome, little is known about how viruses can knock down host restriction and identify their blocked genomes for later viral gene activation and replication. We found that upon baculovirus transduction into Vero E6 cells, the invading viral DNA is trapped by the cellular death domain-associated protein (Daxx) and histone H3.3 in the nucleus, resulting in gene inactivation. IE2, a baculovirus transactivator, targets host Daxx through IE2 SUMO-interacting motifs (SIMs) to indirectly access viral DNA, and forms unique nuclear body structures, we term clathrate cage-like apparatus (CCLA), at the early transduction stage. At the later transduction stage, CCLAs gradually enlarge, and IE2 continues to closely interact with viral DNA but no longer associates with Daxx at this later transduction stage. The association with Daxx is essential for IE2 CCLA formation, and the enlarged CCLAs are capable of transactivating viral but not chromosomal DNA of the Vero E6 cells. Our study reveals that baculovirus IE2 counteracts the cellular intrinsic immune system by specifically targeting Daxx and H3.3 to associate with viral DNA indirectly and efficiently. IE2 then utilizes this association with viral DNA to establish a unique CCLA cellular nanomachinery, which is visible under light microscopy, as an enclosed environment for high level viral gene expression.
目錄:
論文指導委員名冊:...................................................II
指導教授推薦書......................................................IV
博士學位論文審定書...................................................V
博士論文授權........................................................VI
誌謝...............................................................VII
目錄:.............................................................X
中文摘要...........................................................XV
Abstract ..........................................................XVI
I. Introduction.....................................................1
II. Material and Methods ....................................................................6
Cell lines and cell culture. ....................................................................6
Plasmid and virus construction........................................................6
Virus titer determination (by 50% tissue culture infection dose, TCID50).............................................................8
Immunofluorescence (IF) experiments.................................8
DNA fluorescence in situ hybridization (DNA-FISH)..................10
XI
Co-immunoprecipitation (Co-IP) assay...............................11
Western blot analysis...........................................................12
Chromatin immunoprecipitation (ChIP) assays. ......................13
Quantitative polymerase chain reaction (q-PCR) ...................................14
Daxx knockdown................................................... ..15
SUMO inhibitor 2-D08 (2’,3’,4’-trihydroxyflavone) drug treatment....15
Luciferase activity assay. .........................................16
RNA fluorescence in situ hybridization (RNA-FISH)...................17
Statistical analysis............................................................18
III. Results ....................................................................19
The transactivation function of IE2 and co-localization of IE2 CCLAs with viral DNA...........................................................19
Daxx and H3.3 interact with IE2 CCLAs in the early transduction stage...............................................................20
Daxx and H3.3 dissociate from viral DNAs in the late transduction stage in the presence of IE2 ................................................21
Requirement for Daxx in IE2 CCLA growth and transactivation ........23
IE2 interacts with Daxx through SIMs................................24
High levels of mRNA was generated in IE2 CCLAs .....................27
IE2 CCLAs block histone deacetylases (HDACs) .......................28
HDAC inhibitor could rescue the trans-activator activity of IE2 mutants.29
IV. Discussion......................................................31
V. References.......................................................39
VI. Figures.........................................................49
Figure 1. IE2 transactivates expression of foreign genes driven by the TriEx promoter in Vero E6 cells...............................................................49
Figure 2. IE2 tightly co-localizes with viral DNA inside the nucleus.............................................................51
Figure 3. IE2 associations with Daxx/H3.3 at the early transduction stage and escapes Daxx suppression of gene expression at the late transduction stage...............................................................52
Figure 4. The analysis of IE2 and Daxx associations by the co-IP assays..............................................................54
Figure 5. Co-localization study of IE2, Daxx, and DNA at different transduction stages. ....................................................................56
Figure 6. Co-localization study of IE2, H3.3, and DNA at different transduction stages. ....................................................................58
Figure 7. Chromatin immunoprecipitation (ChIP) analysis using Daxx-specific antibody to analyze Daxx-associating DNA sequences. ................60
Figure 8. Daxx knockdown blocks the enlargement of IE2 CCLAs........62
Figure 9. IE2-induced transactivation requires a functional Daxx. ..64
Figure 10. The SIMs are crucial for IE2-induced transactivation. ...65
XIII
Figure 11. Co-localization studies of IE2 variants with SUMO2/3.....66
Figure 12. Co-localization studies of wt and SIM-DM IE2 with Daxx...67
Figure 13. PML nuclear bodies partially co-localize with IE2 through SUMO. ....................................................................68
Figure 14. Treatment of the SUMO E2 inhibitor 2-D08 blocks the formation of IE2 CCLAs...........................................................69
Figure 15. Dynamic association of nuclear actin, and mRNA with IE2 CCLAs...............................................................70
Figure 16. IE2 CCLAs actively accumulate mRNA................................71
Figure 17. Actin and mRNA co-efflux from the nucleus into the cytosolic region..............................................................73
Figure 18. IE2 CCLAs specifically exclude HDAC proteins.............74
Figure 19. The IE2 CCLAs disrupts HDAC proteins without obvious degradation.........................................................75
Figure 20. HDAC inhibitors can rescue the function of mutated IE2...76
Figure 21. The study of IE2 CCLAs in insect cells during baculovirus infection...........................................................77
Figure 22. Treatment with the SUMO E2 inhibitor 2-D08 also blocks the formation of IE2 CCLAs in insect cells. ....................................................................79
Figure 23. A model of IE2 CCLA formation and gene transactivation.....................................................80
Figure S1. Daxx knockdown enhances viral gene activation. ..........81
XIV
Figure S2. 2-D08 inhibit the transactivation function of IE2........82
Figure S3. Luciferase assay showing that the period of highest expression was around 60~72 hpt................................................83
Table 1. Primer list .............................................. 85
1.Abbasi, A. A. (2008). "Are we degenerate tetraploids? More genomes, new facts." Biol Direct 3: 50.
2.Aguilar-Martinez, E., B. Guo and A. D. Sharrocks (2016). "RNF4 interacts with multiSUMOylated ETV4." Wellcome Open Res 1: 3.
3.Airenne, K. J., Y. C. Hu, T. A. Kost, R. H. Smith, R. M. Kotin, C. Ono, Y. Matsuura, S. Wang and S. Yla-Herttuala (2013). "Baculovirus: an insect-derived vector for diverse gene transfer applications." Mol Ther 21(4): 739-749.
4.Atwood, J. L. (2000). Inclusion Compounds. Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA.
5.Ayres, M. D., S. C. Howard, J. Kuzio, M. Lopez-Ferber and R. D. Possee (1994). "The complete DNA sequence of Autographa californica nuclear polyhedrosis virus." Virology 202(2): 586-605.
6.Blissard, G. W. and G. F. Rohrmann (1990). "Baculovirus diversity and molecular biology." Annu Rev Entomol 35: 127-155.
7.Boutell, C. and R. D. Everett (2013). "Regulation of alphaherpesvirus infections by the ICP0 family of proteins." J Gen Virol 94(Pt 3): 465-481.
8.Boyce, F. M. and N. L. Bucher (1996). "Baculovirus-mediated gene transfer into mammalian cells." Proc Natl Acad Sci U S A 93(6): 2348-2352.
9.Carson, D. D., L. A. Guarino and M. D. Summers (1988). "Functional mapping of an AcNPV immediately early gene which augments expression of the IE-1 trans-activated 39K gene." Virology 162(2): 444-451.
10.Chambers, A. C., M. Aksular, L. P. Graves, S. L. Irons, R. D. Possee and L. A. King (2018). "Overview of the Baculovirus Expression System." Curr Protoc Protein Sci 91: 5 4 1-5 4 6.
11.Chen, C. Y., C. Y. Lin, G. Y. Chen and Y. C. Hu (2011). "Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications." Biotechnol Adv 29(6): 618-631.
12.Chen, Y. A., Y. L. Shen, H. Y. Hsia, Y. P. Tiang, T. L. Sung and L. Y. Chen (2017). "Extrachromosomal telomere repeat DNA is linked to ALT development via cGAS-STING DNA sensing pathway." Nat Struct Mol Biol 24(12): 1124-1131.
13.Cuevas-Bennett, C. and T. Shenk (2008). "Dynamic histone H3 acetylation and methylation at human cytomegalovirus promoters during replication in fibroblasts." J Virol 82(19): 9525-9536.
14.Diefenbacher, M. and A. Orian (2017). "Stabilization of nuclear oncoproteins by RNF4 and the ubiquitin system in cancer." Mol Cell Oncol 4(1): e1260671.
15.Drane, P., K. Ouararhni, A. Depaux, M. Shuaib and A. Hamiche (2010). "The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3." Genes Dev 24(12): 1253-1265.
16.Dundr, M. and T. Misteli (2010). "Biogenesis of nuclear bodies." Cold Spring Harb Perspect Biol 2(12): a000711.
17.Everett, R. D. (2013). "The spatial organization of DNA virus genomes in the nucleus." Plos Pathogens 9(6): e1003386.
18.Everett, R. D. (2015). "Dynamic Response of IFI16 and Promyelocytic Leukemia Nuclear Body Components to Herpes Simplex Virus 1 Infection." J Virol 90(1): 167-179.
19.Everett, R. D., A. J. Bell, Y. Lu and A. Orr (2013). "The replication defect of ICP0-null mutant herpes simplex virus 1 can be largely complemented by the combined activities of human cytomegalovirus proteins IE1 and pp71." J Virol 87(2): 978-990.
20.Everett, R. D., C. Boutell and B. G. Hale (2013). "Interplay between viruses and host sumoylation pathways." Nature Reviews Microbiology 11(6): 400-411.
21.Fujita, R., T. Matsuyama, J. Yamagishi, K. Sahara, S. Asano and H. Bando (2006). "Expression of Autographa californica multiple nucleopolyhedrovirus genes in mammalian cells and upregulation of the host beta-actin gene." J Virol 80(5): 2390-2395.
22.Fujita, R., D. Ohtsuka, K. Sahara, S. Asano and H. Bando (2010). "An HDAC inhibitor increases AcMNPV gene expression in mammalian cells." Arch Virol 155(4): 577-581.
23.Gartner, A. and S. Muller (2014). "PML, SUMO, and RNF4: guardians of nuclear protein quality." Molecular Cell 55(1): 1-3.
24.Hecker, C. M., M. Rabiller, K. Haglund, P. Bayer and I. Dikic (2006). "Specification of SUMO1- and SUMO2-interacting motifs." J Biol Chem 281(23): 16117-16127.
25.Herbein, G. and D. Wendling (2010). "Histone deacetylases in viral infections." Clin Epigenetics 1(1-2): 13-24.
26.Hofmann, C., V. Sandig, G. Jennings, M. Rudolph, P. Schlag and M. Strauss (1995). "Efficient gene transfer into human hepatocytes by baculovirus vectors." Proc Natl Acad Sci U S A 92(22): 10099-10103.
27.Hofmann, W. A., L. Stojiljkovic, B. Fuchsova, G. M. Vargas, E. Mavrommatis, V. Philimonenko, K. Kysela, J. A. Goodrich, J. L. Lessard, T. J. Hope, P. Hozak and P. de Lanerolle (2004). "Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II." Nature Cell Biology 6(11): 1094-1101.
28.Imai, N., S. Matsumoto and W. Kang (2005). "Formation of Bombyx mori nucleopolyhedrovirus IE2 nuclear foci is regulated by the functional domains for oligomerization and ubiquitin ligase activity." J Gen Virol 86(Pt 3): 637-644.
29.Izumiya, Y., K. Kobayashi, K. Y. Kim, M. Pochampalli, C. Izumiya, B. Shevchenko, D. H. Wang, S. B. Huerta, A. Martinez, M. Campbell and H. J. Kung (2013). "Kaposi's sarcoma-associated herpesvirus K-Rta exhibits SUMO-targeting ubiquitin ligase (STUbL) like activity and is essential for viral reactivation." Plos Pathogens 9(8): e1003506.
30.Kato, T., S. Sugioka, K. Itagaki and E. Y. Park (2016). "Gene transduction in mammalian cells using Bombyx mori nucleopolyhedrovirus assisted by glycoprotein 64 of Autographa californica multiple nucleopolyhedrovirus." Sci Rep 6: 32283.
31.Kenoutis, C., R. C. Efrose, L. Swevers, A. A. Lavdas, M. Gaitanou, R. Matsas and K. Iatrou (2006). "Baculovirus-mediated gene delivery into Mammalian cells does not alter their transcriptional and differentiating potential but is accompanied by early viral gene expression." J Virol 80(8): 4135-4146.
32.Kim, Y. S., K. Nagy, S. Keyser and J. S. Schneekloth, Jr. (2013). "An electrophoretic mobility shift assay identifies a mechanistically unique inhibitor of protein sumoylation." Chem Biol 20(4): 604-613.
33.Kool, M., C. H. Ahrens, R. W. Goldbach, G. F. Rohrmann and J. M. Vlak (1994). "Identification of genes involved in DNA replication of the Autographa californica baculovirus." Proc Natl Acad Sci U S A 91(23): 11212-11216.
34.Koonin, E. V., V. V. Dolja and M. Krupovic (2015). "Origins and evolution of viruses of eukaryotes: The ultimate modularity." Virology 479-480: 2-25.
35.Kost, T. A., J. P. Condreay and D. L. Jarvis (2005). "Baculovirus as versatile vectors for protein expression in insect and mammalian cells." Nat Biotechnol 23(5): 567-575.
36.Kung, C. C., M. T. Naik, S. H. Wang, H. M. Shih, C. C. Chang, L. Y. Lin, C. L. Chen, C. Ma, C. F. Chang and T. H. Huang (2014). "Structural analysis of poly-SUMO chain recognition by the RNF4-SIMs domain." Biochem J 462(1): 53-65.
37.Laakkonen, J. P., M. U. Kaikkonen, P. H. Ronkainen, T. O. Ihalainen, E. A. Niskanen, M. Hakkinen, M. Salminen, M. S. Kulomaa, S. Yla-Herttuala, K. J. Airenne and M. Vihinen-Ranta (2008). "Baculovirus-mediated immediate-early gene expression and nuclear reorganization in human cells." Cell Microbiol 10(3): 667-681.
38.Leisy, D. J., C. Rasmussen, E. O. Owusu and G. F. Rohrmann (1997). "A mechanism for negative gene regulation in Autographa californica multinucleocapsid nuclear polyhedrosis virus." J Virol 71(7): 5088-5094.
39.Lewis, P. W., S. J. Elsaesser, K. M. Noh, S. C. Stadler and C. D. Allis (2010). "Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres." Proc Natl Acad Sci U S A 107(32): 14075-14080.
40.Liew, C. W., H. Sun, T. Hunter and C. L. Day (2010). "RING domain dimerization is essential for RNF4 function." Biochem J 431(1): 23-29.
41.Lin, D. Y., Y. S. Huang, J. C. Jeng, H. Y. Kuo, C. C. Chang, T. T. Chao, C. C. Ho, Y. C. Chen, T. P. Lin, H. I. Fang, C. C. Hung, C. S. Suen, M. J. Hwang, K. S. Chang, G. G. Maul and H. M. Shih (2006). "Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors." Molecular Cell 24(3): 341-354.
42.Liu, C. Y., H. Z. Chen and Y. C. Chao (2010). "Maximizing baculovirus-mediated foreign proteins expression in mammalian cells." Curr Gene Ther 10(3): 232-241.
43.Liu, C. Y., C. H. Wang, W. K. Hsiao, H. R. Lo, C. P. Wu and Y. C. Chao (2009). "RING and coiled-coil domains of baculovirus IE2 are critical in strong activation of the cytomegalovirus major immediate-early promoter in mammalian cells." J Virol 83(8): 3604-3616.
44.Liu, C. Y., C. H. Wang, J. C. Wang and Y. C. Chao (2007). "Stimulation of baculovirus transcriptome expression in mammalian cells by baculoviral transcriptional activators." J Gen Virol 88(Pt 8): 2176-2184.
45.Lukashchuk, V. and R. D. Everett (2010). "Regulation of ICP0-null mutant herpes simplex virus type 1 infection by ND10 components ATRX and hDaxx." J Virol 84(8): 4026-4040.
46.Mainz, D., I. Quadt and D. Knebel-Morsdorf (2002). "Nuclear IE2 structures are related to viral DNA replication sites during baculovirus infection." J Virol 76(10): 5198-5207.
47.Mansouri, M., I. Bellon-Echeverria, A. Rizk, Z. Ehsaei, C. Cianciolo Cosentino, C. S. Silva, Y. Xie, F. M. Boyce, M. W. Davis, S. C. Neuhauss, V. Taylor, K. Ballmer-Hofer, I. Berger and P. Berger (2016). "Highly efficient baculovirus-mediated multigene delivery in primary cells." Nat Commun 7: 11529.
48.Mansouri, M. and P. Berger (2018). "Baculovirus for gene delivery to mammalian cells: Past, present and future." Plasmid 98: 1-7.
49.Mao, Y. S., B. Zhang and D. L. Spector (2011). "Biogenesis and function of nuclear bodies." Trends in Genetics 27(8): 295-306.
50.McNaught, A. D., A. Wilkinson and International Union of Pure and Applied Chemistry. (1997). Compendium of chemical terminology : IUPAC recommendations. Oxford England ; Malden, MA, USA, Blackwell Science.
51.Misu, S., M. Takebayashi and K. Miyamoto (2017). "Nuclear Actin in Development and Transcriptional Reprogramming." Front Genet 8: 27.
52.Murges, D., I. Quadt, J. Schroer and D. Knebel-Morsdorf (2001). "Dynamic nuclear localization of the baculovirus proteins IE2 and PE38 during the infection cycle: the promyelocytic leukemia protein colocalizes with IE2." Exp Cell Res 264(2): 219-232.
53.Muromoto, R., M. Ishida, K. Sugiyama, Y. Sekine, K. Oritani, K. Shimoda and T. Matsuda (2006). "Sumoylation of Daxx regulates IFN-induced growth suppression of B lymphocytes and the hormone receptor-mediated transactivation." J Immunol 177(2): 1160-1170.
54.Naik, N. G., Y. W. Lo, T. Y. Wu, C. C. Lin, S. C. Kuo and Y. C. Chao (2018). "Baculovirus as an efficient vector for gene delivery into mosquitoes." Sci Rep 8(1): 17778.
55.Newhart, A., I. U. Rafalska-Metcalf, T. Yang, L. M. Joo, S. L. Powers, A. V. Kossenkov, M. Lopez-Jones, R. H. Singer, L. C. Showe, E. Skordalakes and S. M. Janicki (2013). "Single cell analysis of RNA-mediated histone H3.3 recruitment to a cytomegalovirus promoter-regulated transcription site." J Biol Chem 288(27): 19882-19899.
56.Newhart, A., I. U. Rafalska-Metcalf, T. Yang, D. G. Negorev and S. M. Janicki (2012). "Single-cell analysis of Daxx and ATRX-dependent transcriptional repression." J Cell Sci 125(Pt 22): 5489-5501.
57.Obrdlik, A., A. Kukalev, E. Louvet, A. K. Farrants, L. Caputo and P. Percipalle (2008). "The histone acetyltransferase PCAF associates with actin and hnRNP U for RNA polymerase II transcription." Mol Cell Biol 28(20): 6342-6357.
58.Ono, C., A. Ninomiya, S. Yamamoto, T. Abe, X. Wen, T. Fukuhara, M. Sasai, M. Yamamoto, T. Saitoh, T. Satoh, T. Kawai, K. J. Ishii, S. Akira, T. Okamoto and Y. Matsuura (2014). "Innate immune response induced by baculovirus attenuates transgene expression in mammalian cells." J Virol 88(4): 2157-2167.
59.Percipalle, P. and N. Visa (2006). "Molecular functions of nuclear actin in transcription." J Cell Biol 172(7): 967-971.
60.Prikhod'ko, E. A. and L. K. Miller (1998). "Role of baculovirus IE2 and its RING finger in cell cycle arrest." J Virol 72(1): 684-692.
61.Rapkin, L. M., K. Ahmed, S. Dulev, R. Li, H. Kimura, A. M. Ishov and D. P. Bazett-Jones (2015). "The histone chaperone DAXX maintains the structural organization of heterochromatin domains." Epigenetics Chromatin 8: 44.
62.Salomoni, P. (2013). "The PML-Interacting Protein DAXX: Histone Loading Gets into the Picture." Front Oncol 3: 152.
63.Schreiner, S. and H. Wodrich (2013). "Virion factors that target Daxx to overcome intrinsic immunity." J Virol 87(19): 10412-10422.
64.Shih, H. M., C. C. Chang, H. Y. Kuo and D. Y. Lin (2007). "Daxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization." Biochem Soc Trans 35(Pt 6): 1397-1400.
65.Shippam-Brett, C. E., L. G. Willis and D. A. Theilmann (2001). "Analysis of sequences involved in IE2 transactivation of a baculovirus immediate-early gene promoter and identification of a new regulatory motif." Virus Res 75(1): 13-28.
66.Theze, J., A. Bezier, G. Periquet, J. M. Drezen and E. A. Herniou (2011). "Paleozoic origin of insect large dsDNA viruses." Proc Natl Acad Sci U S A 108(38): 15931-15935.
67.Trometer, C. and P. Falson (2010). "Mammalian membrane protein expression in baculovirus-infected insect cells." Methods Mol Biol 601: 105-117.
68.Tsai, K., L. Chan, R. Gibeault, K. Conn, J. Dheekollu, J. Domsic, R. Marmorstein, L. M. Schang and P. M. Lieberman (2014). "Viral reprogramming of the Daxx histone H3.3 chaperone during early Epstein-Barr virus infection." J Virol 88(24): 14350-14363.
69.Tsai, K., N. Thikmyanova, J. A. Wojcechowskyj, H. J. Delecluse and P. M. Lieberman (2011). "EBV tegument protein BNRF1 disrupts DAXX-ATRX to activate viral early gene transcription." Plos Pathogens 7(11): e1002376.
70.Tung, H., S. C. Wei, H. R. Lo and Y. C. Chao (2016). "Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in Insect and Mammalian Cells to Facilitate Its Proper Functioning." PLoS One 11(2): e0148578.
71.Walters, M. S., C. A. Kyratsous and S. J. Silverstein (2010). "The RING finger domain of Varicella-Zoster virus ORF61p has E3 ubiquitin ligase activity that is essential for efficient autoubiquitination and dispersion of Sp100-containing nuclear bodies." J Virol 84(13): 6861-6865.
72.Yoo, S. and L. A. Guarino (1994). "The Autographa californica nuclear polyhedrosis virus ie2 gene encodes a transcriptional regulator." Virology 202(2): 746-753.
73.Yoo, S. and L. A. Guarino (1994). "Functional dissection of the ie2 gene product of the baculovirus Autographa californica nuclear polyhedrosis virus." Virology 202(1): 164-172.
74.Zhao, Q., Y. Xie, Y. Zheng, S. Jiang, W. Liu, W. Mu, Z. Liu, Y. Zhao, Y. Xue and J. Ren (2014). "GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs." Nucleic Acids Research 42(Web Server issue): W325-330.


電子全文 電子全文(網際網路公開日期:20240319)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔