跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉孝鳳
研究生(外文):LIOU,HSIAO-FENG
論文名稱:探討 內源性半乳糖凝集素 -3於狼瘡腎炎之 生理 病理 角色
論文名稱(外文):The pathophysiologic role of endogenous galectin-3 in lupus nephritis
指導教授:陳安陳安引用關係
指導教授(外文):CHEN, ANN
口試委員:陳安賈淑敏花國峰
口試委員(外文):CHEN,ANNKA-SHUK-MANHUA-KUO-FENG
口試日期:2019-05-22
學位類別:碩士
校院名稱:國防醫學院
系所名稱:病理及寄生蟲學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:51
中文關鍵詞:內源性半乳糖凝集素 -3狼瘡腎炎
外文關鍵詞:endogenous galectin galectingalectin -3
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究之主要目的在於驗證內源性(Endogenous)之半乳糖凝集
素-3(Galectin-3; Gal-3)在狼瘡腎炎(Lupus nephritis)中所扮演
腎臟的保護角色及相關之分子機制。我們近期相關研究之成果顯示,
NLRP3 發炎體與自嗜作用在狼瘡腎炎之發生與惡化皆扮演一關鍵性角
色。本論文之研究結果顯示:[1]狼瘡腎炎病人之腎臟切片具有Gal-
3 蛋白質之表現;[2] Gal-3 基因剔除小鼠(Gal-3 knockout mice)誘
發類狼瘡腎炎模式具嚴重之腎臟病理變化 ;[3]經由Gal-3 基因剔除
小鼠與自發型狼瘡腎炎KO1.Yaa 小鼠之配種,成功建立一全新自發型
之惡化狼瘡腎炎小鼠(Gal-3 KO-KO1.Yaa mice)模式,較背景鼠具
嚴重腎臟病 理與免疫之變化。據此,推測內源性Gal-3 對狼瘡腎炎
具腎臟保護之功能,值得進 一步探究相關之作用機制。因此進一步
驗證內源性Gal-3 可經由抑制NLRP3 發炎體活化及調控自嗜作用之
裂解NLRP3 發炎體機制,進而抑制巨噬細胞活化與調節T 細胞功能,
抑阻狼瘡腎炎之發生與惡化。研究結果顯示:[1]內源性Gal-3 對狼瘡
腎炎具保護角色;[2]內源性Gal-3 調控對狼瘡腎炎之NLRP3 發炎體
活化及自嗜作。本論文研究驗證與確認了內源性Gal-3 與相關路徑
所調節/ 緩解狼瘡腎炎發生與疾病惡化之分子機制。
Lupus nephritis (LN) is a major complication of systemic lupus
erythematosus. Current therapeutic regimens to control the disease
progression of the acute onset of severe LN include high doses of
corticosteroids, cytotoxic agents and disease-modifying antirheumatic
drugs. However, the therapeutic effects are still insufficient, and there is
still a major concern about the potential adverse events of these drugs. Thus,
the development of new therapeutic regimens with much fewer and more
tolerable side effects is clinically warranted. Galectin-3 (Gal-3) is a β-
galactoside-binding protein and implicated in diverse biological processes
in macrophages, dendritic cells, activated lymphocytes, and epithelial cells.
However, the role of Gal-3 and exact mechanisms involved in the
development and progression/deterioration of LN has yet to be determined,
although it has been shown to express in the renal of patients with LN. The
results show that [1] the distribution and levels of Gal-3 protein were
increased in renal biopsy specimen of patients with LN, compared to
normal control subjects, although there was not significant difference in
Gal-3 protein level in the glomerulus, tubular epithelial cells or periglomerular
infiltrating leukocytes among the several classes of the renal
condition – IIIc, IVa, IVb, IV c and V; [2] successful crossing of Gal-3
knockout (KO) mice with KO1.Yaa mice, a spontaneous mouse model of
LN, to generate Gal-3 KO-KO1.Yaa mice, a new mouse model of
accelerated and severe LN; and [3] deficiency of endogenous Gal-3
resulted in markedly increased severity in clinical and pathological
alterations in both the LPS-induced LN in Gal-3 KO mice and spontaneous
VIII
LN in Gal-3 KOKO1.Yaa mice, compared to their respective wild type
mice that equally induced or spontaneously developed the renal condition.
With the results to be obtained, we are committed to develop a novel
therapeutic approach using Gal-3 plasmids via an ultrasound-mediated
microbubble gene transfer system as our future work, and such a novel
nucleic acid drug candidate may be considered for the therapeutic
intervention for LN in the foreseeable near future.
正文目錄 ..................................................................................................... I
表目錄 ...................................................................................................... IV
圖目錄 ........................................................................................................ V
中文摘要 .................................................................................................. VI
英文摘要 ................................................................................................. VII
第一章 緒言............................................................................................... 1
第一節 紅斑性狼瘡(Systemic Lupus Erythematosus, SLE) ..... 1
第二節 狼瘡腎炎( Lupus nephritis, LN) .......................................... 2
第三節 半乳醣凝集素-3(Galectin-3 , Gal-3) .............................. 7
第四節 狼瘡腎炎中的半乳醣凝集素-3 ............................................. 8
第五節 研究目的 ................................................................................ 9
第二章 材料與方法 ................................................................................ 10
第一節 腎臟病理組織型態學 .......................................................... 10
第二節 用腎臟組織蠟塊染C3, IgG 螢光染色 ............................... 11
第三節 特殊染色Periodic Acid Methenamine Silver (PAM) ...... 12
第四節 免疫組織化學染色 .............................................................. 14
第五節 誘發狼瘡腎炎動物模式 ...................................................... 15

第六節 血清中自體抗體及補體之偵測 .......................................... 15
第七節 統計分析 .............................................................................. 16
第三章 結果............................................................................................. 17
第一節 狼瘡腎炎病人之腎臟切片具有半乳糖凝集素-3 蛋白質之
表現 ...................................................................................... 17
第二節 半乳糖凝集素-3 基因剔除小鼠誘發類狼瘡腎炎模式具嚴
重之腎臟病理變化 .............................................................. 17
第三節 自發型半乳糖凝集素-3 基因剔除之自發型狼瘡腎炎小鼠
模式建立 .............................................................................. 19
第四章 討論............................................................................................. 21
第一節 全身免疫調節 ...................................................................... 21
第二節 於半乳糖凝集素-3 與類狼瘡腎炎之發炎反應的相關性 . 21
第三節 半乳糖凝集素-3 於自發型狼瘡腎炎是否具保護作用 ...... 22
第五章 結論............................................................................................. 24
第六章、參考文獻 .................................................................................. 25
表 ............................................................................................................... 33
圖 ............................................................................................................... 35

表目錄
頁次
表一、世界衛生組織World Health Organization (WHO)狼瘡腎炎的形
態學分類(西元1982 修訂) .......................................................... 33
表二、LN 的急性與慢性評估(NIH: National Institutes of Health) ...... 34

圖目錄
頁次
圖一、偵測半乳醣凝集素-3 在狼瘡腎炎病患之腎臟組織病理學與免疫
組織化學染色表現 .................................................................................. 35
圖二、利用免疫組織化學染色偵測半乳醣凝集素-3 在各類別狼瘡腎炎
患者腎臟組織之表現 .............................................................................. 36
圖三、偵側血液中半乳醣凝集素-3 和補體3、4 和dsDNA 相關性分析
................................................................................................................... 37
圖四、類狼瘡腎炎小鼠之蛋白尿和腎功能的評估 .............................. 38
圖五、類狼瘡腎炎小鼠之腎臟組織病理學分析 .................................. 39
圖六、以免疫組織化學偵測類狼瘡腎炎小鼠之腎臟組織pan-T 細胞浸
潤 ............................................................................................................... 40
圖七、以免疫組織化學染色偵測類狼瘡腎炎小鼠中的腎臟巨噬細浸潤
胞 ............................................................................................................... 41
圖八、以免疫螢光染色確認自發型狼瘡腎炎小鼠之腎組織中免疫複合
物IgG 及C3 之沉積 ................................................................................ 42
圖九、培育半乳醣凝集素-3 基因剔除之自發型狼瘡腎炎小鼠模式 .. 43
圖十、偵測自發型狼瘡腎炎小鼠中蛋白尿及腎功能的曲線圖 .......... 44
圖十一、偵測自發型狼瘡腎炎小鼠之腎臟組織病理染色 .................. 45

圖十二、偵測自發行狼瘡腎炎小鼠之腎臟組織病理學半定量分析 .. 46
圖十三、以Periodic Acid Methenarnine(PAM)染色分析自發型狼瘡腎
炎小鼠腎臟組織纖維化之情形 .............................................................. 47
圖十四、分析自發型狼瘡腎炎小鼠腎臟組織之CD3 T 細胞浸潤情形
................................................................................................................... 48
圖十五、CD3 T 細胞之半定量分析 ..................................................... 49
圖十六、以免疫化學染色偵測自發型狼瘡腎炎小鼠腎臟組織之巨噬細
胞(F4/80)浸潤情形 ............................................................................. 50
圖十七、巨噬細胞之半定量分析 ........................................................ 51
[1] Danchenko, N.; Satia, J. A.; Anthony, M. S. Epidemiology of systemic
lupus erythematosus: a comparison of worldwide disease burden. Lupus
15:308-318; 2006.
[2] Cameron, J. S. Lupus nephritis. J Am Soc Nephrol 10:413-424; 1999.
[3] Rullo OJ, Tsao BP. Recent insights into the genetic basis of systemic
lupus erythematosus. Ann Rheum Dis. Epub 2012 Dec 19. Br Med J
(Clin Res Ed) 1983;287:1021
[4] Danchenko, N.; Satia, J. A.; Anthony, M. S. Epidemiology of systemic
lupus erythematosus: a comparison of worldwide disease burden.
Lupus 15:308-318; 2006.
[5] Richard D. Sontheimer, MD; Jesse R. Thomas; James N. Gilliam, MD;
Diagnosis and classification of renal disease in systemic lupus
Accessed October 19, 2016. Arch Dermatol. 1979;115(12):1409-1415.
[6] Abe, J.; Ueha, S.; Suzuki, J.; Tokano, Y.; Matsushima, K.; Ishikawa, S.
Increased Foxp3(+) CD4(+) regulatory T cells with intact suppressive
activity but altered cellular localization in murine lupus. Am J Pathol
173:1682-1692; 2008.
[7] Tan, E. M.; Cohen, A. S.; Fries, J. F.; Masi, A. T.; McShane, D. J.;
Rothfield, N. F.; Schaller, J. G.; Talal, N.; Winchester, R. J. The 1982
revised criteria for the classification of systemic lupus erythematosus.
Arthritis Rheum 25:1271-1277; 1982.
[8] Austin, H. A., 3rd; Boumpas, D. T.; Vaughan, E. M.; Balow J. E. Highrisk
features of lupus nephritis: importance of race and clinical and
26
histological factors in 166 patients. Nephrol Dial Transplant 10:1620-
1628; 995.
[9] Bao, H.; Liu, Z. H.; Xie, H. L.; Hu, W. X.; Zhang, H. T.; Li, L. S.
Successful treatment of class V+IV lupus nephritis with multitarget
therapy. J Am Soc Nephrol 19:2001-2010; 2008.
[10] Bagavant, H.; Deshmukh, U. S.; Wang, H.; Ly, T.; Fu, S. M. Role for
nephritogenic T cells in lupus glomerulonephritis: progression to
renal failure is accompanied by T cell activation and expansion in
regional lymph nodes. J Immunol 177:8258-8265; 2006.
[11] Jacobi, A. M.; Mei, H.; Hoyer, B. F.; Mumtaz, I. M.; Thiele, K.;
Radbruch, A.; Burmester, G. R.; Hiepe, F.; Dorner, T. HLADRhigh/
CD27high plasmablasts indicate active disease in patients
with systemic lupus erythematosus. Ann Rheum Dis 69:305-308; 2010.
[12] Cheema, G. S.; Roschke, V.; Hilbert, D. M.; Stohl, W. Elevated serum
B lymphocyte stimulator levels in patients with systemic immunebased
rheumatic diseases. Arthritis Rheum 44:1313-1319; 2001.
[13] Crow, M. K. Costimulatory molecules and T-cell-B-cell interactions.
Rheum Dis Clin North Am 30:175-191, vii-viii; 2004.
[14] Scheinecker, C.; Zwolfer, B.; Koller, M.; Manner, G.; Smolen, J. S.
Alterations of dendritic cells in systemic lupus erythematosus:
phenotypic and functional deficiencies. Arthritis Rheum 44:856-865;
2001.
[15] Tucci, M.; Quatraro, C.; Lombardi, L.; Pellegrino, C.; Dammacco, F.;
Silvestris, F. Glomerular accumulation of plasmacytoid dendritic cells
27
in active lupus nephritis: role of interleukin-18. Arthritis Rheum
58:251-262; 2008.
[16] Sakaguchi, S. Naturally arising CD4+ regulatory t cells for
immunologic self-tolerance and negative control of immune
responses. Annu Rev Immunol 22:531-562; 2004.
[17] Hakkim, A.; Furnrohr, B. G.; Amann, K.; Laube, B.; Abed, U. A.;
Brinkmann, V.; Herrmann, M.; Voll, R. E.; Zychlinsky, A. Impairment
of neutrophil extracellular trap degradation is associated with lupus
nephritis. Proc Natl Acad Sci U S A 107:9813-9818; 2010.
[18] Schiffer, L.; Bethunaickan, R.; Ramanujam, M.; Huang, W.; Schiffer,
M.; Tao, H.; Madaio, M. P.; Bottinger, E. P.; Davidson, A. Activated
renal macrophages are markers of disease onset and disease remission
in lupus nephritis. J Immunol 180:1938-1947; 2008.
[19] Schwartz, M. M.; Korbet, S. M.; Lewis, E. J. The prognosis and
pathogenesis of severe lupus glomerulonephritis. Nephrol Dial
Transplant 23:1298-1306; 2008.
[20] Shahrara, S.; Pickens, S. R.; Mandelin, A. M., 2nd; Karpus, W. J.;
Huang, Q.; Kolls, J. K.; Pope, R. M. IL-17-mediated monocyte
migration occurs partially through CC chemokine ligand 2/monocyte
chemoattractant protein-1 induction. J Immunol 184:4479-4487; 2010
[21] Jacobi, A. M.; Mei, H.; Hoyer, B. F.; Mumtaz, I. M.; Thiele, K.;
Radbruch, A.; Burmester, G. R.; Hiepe, F.; Dorner, T. HLADRhigh/
CD27high plasmablasts indicate active disease in patients
with systemic lupus erythematosus. Ann Rheum Dis 69:305-308; 2010.
28
[22] Pollak, V. E.; Pirani, C. L.; Schwartz, F. D. The Natural History of the
Renal Manifestations of Systemic Lupus Erythematosus. J Lab Clin
Med 63:537-550; 1964.
[23] Lenz, O.; Contreras, G. Treatment options for severe lupus nephritis.
Arch Immunol Ther Exp (Warsz) 52:356-365; 2004.
[24] Appel, G. B.; Cohen, D. J.; Pirani, C. L.; Meltzer, J. I.; Estes, D.
Longterm follow-up of patients with lupus nephritis. A study based
on the classification of the World Health Organization. Am J
Med 83:877- 885; 1987.
[25] Sato S, Hughes RCJ. Regulation of secretion and surface expression
of Mac-2, a galactoside binding protein of macrophages. J Biol Chem
1994;269:4424-4430.
[26] Moutsatsos IK, Wade M, Schindler M, Wang JL. Endogenous lectins
from cultured cells: nuclear localization of carbohydrate binding
protein 35 in proliferating 3T3 fibroblasts. Proc Natl Acad Sci USA
1987;84:6452-6456.
[27] Perillo NL, Marcus ME, Baum LG. Galectins: versatile modulators of
cell adhesion, cell proliferation, and cell death. J Mol Med
1998;76:402-412.
[28] Xue J1, Gao X, Fu C, Cong Z, Jiang H, Wang W, Chen T, Wei Q, Qin
C., Regulation of galectin-3-induced apoptosis of Jurkat cells by both
O-glycans and N-glycans on CD45. FEBS Lett. 2013;
11;587(24):3986-94.
29
[29] Barondes SH, Cooper DN, Gitt MA, Leffler H. Galectins: structure
and function of a large family of animal lectins. J Biol Chem
1994;269:20807-20810.
[30] Raz A, Lotan R. Endogenous galactoside-binding lectins: a new class
of functional tumor cell surface molecules related to metastasis.
Cancer Metastasis Rev 1987;6:433-452. Cell Res 1993;207:8-18.
[31]Matarrese P, Fusco O, Tinari N, et al. Galectin-3 overexpression
protects from apoptosis by improving cell adhesion properties. Int J
Cancer 2000;85:545-554.
[32] Fukumori T, Oka N, Takenaka Y, et al. Galectin-3 regulates 19
mitochondrial stability and antiapoptotic function in response to
anticancer drug in prostate cancer. Cancer Res 2006;66:3114-3119.
[33] Kluth DC et al., Multiple facets of macrophages in renal injury. Kidney
Int. 2004; 66:542-57.
[34] Gong, H.C., Honjo, Y., Nangia- Maker, P., Hogan, V., Mazurak, N.,
Bresalier, R.S., and Raz, A. (1999). The NH2 terminus of galectin-3
governs cellular compartmentalization and functions in cancer cells.
Cancer Res 59:6239-6245.
[35] Wollenberg, A., de la Salle, H., Hanau, D., Liu, F.T., and Bieber,
T.(1993). Human keratinocytes release the endogenous betagalactoside-
binding soluble lectin immunoglobulin E (IgE-binding
protein) which binds to Langerhans cells where it modulates their
binding capacity for IgE glycoforms. J Exp Med 178:777-785.
30
[36] Cooper DN Cooper DN,Biochim Biophys Acta, Galectinomics:
finding themes in complexity. Biochim Biophys Acta. 2002; 1572(2-
3):2009-31.
[37] Rabinovich GA Rabinovich GA,Nat Rev Immunol., Turning 'sweet'
on immunity: galectin-glycan interactions in immune tolerance and
inflammation. Nat Rev Immunol. 2009; 9(5):338-52.
[38] Sundblad V1, Croci DO, Rabinovich GA., Regulated expression of
galectin-3,a multifunctional glycan-binding protein, in
haematopoietic and non-haematopoietic tissues. Histol Histopathol.
2011; 26(2):247-65.
[39] Nieminen J1, St-Pierre C, Bhaumik P, Poirier F, Sato S., Role of
galectin-3 in leukocyte recruitment in a murine model of lung
infection by Streptococcus pneumoniae. J Immunol.2008;
15;180(4):2466-73.
[40] Sano H1, Hsu DK, Yu L, Apgar JR, Kuwabara I, Yamanaka T,
Hirashima M, Liu FT., Human galectin-3 is a novel chemoattractant
for monocytes and macrophages. J Immunol. 2000; 15;165(4):2156-
64.
[41] Hsu DK1, Chen HY, Liu FT., Galectin-3 regulates T-cell functions.
Immunol Rev. 2009; 230(1):114-27
[42] Fukumori T1, Takenaka Y, Yoshii T, Kim HR, Hogan V, Inohara H,
Kagawa S, Raz A. Cancer Res. 2003; 63(23):8302-11.
[43] Morgan R1, Gao G, Pawling J, Dennis JW, Demetriou M, Li B. J
Immunol. 2004; 173(12):7200-8.
31
[44] Demetriou M1, Granovsky M, Quaggin S, Dennis JW. Nature. 2001;
409(6821):733-9.
[45] MacKinnon AC1, Farnworth SL, Hodkinson PS, Henderson NC,
Atkinson KM, Leffler H, Nilsson UJ, Haslett C, Forbes SJ, Sethi T. J
Immunol. 2008; 180(4):2650-8.
[46] Karlsson A1, Christenson K, Matlak M, Björstad A, Brown KL,
Telemo E, Salomonsson E, Leffler H, Bylund J.2009; 19(1):16-20.
[47] Boileau C1, Poirier F, Pelletier JP, Guévremont M, Duval N, Martel-
Pelletier J, Reboul P. Ann Rheum Dis. 2008; 67(2):175-81.
[48] Li Y1, Komai-Koma M, Gilchrist DS, Hsu DK, Liu FT, Springall T,
Xu D. J Immunol. 2008; 181(4):2781-9.
[49] Quenum Zangbede FO1, Chauhan A1, Sharma J1, Mishra BB2. J
Neurosci. 2018; 38(30):6737-6750.
[50] Pejnovic NN1, Pantic JM, Jovanovic IP, Radosavljevic GD,
Milovanovic MZ, Nikolic IG, Zdravkovic NS, Djukic AL,
Arsenijevic NN, Lukic ML. Diabetes. 2013; 62(6):1932-44.
[51] Menini S1, Iacobini C1, Blasetti Fantauzzi C1, Pesce CM2, Pugliese
G1. Oxid Med Cell Longev. 2016; 2016:9618092.
[52] Kikuchi Y1, Kobayashi S, Hemmi N, Ikee R, Hyodo N, Saigusa T,
Namikoshi T, Yamada M, Suzuki S, Miura S., Galectin-3-positive cell
infiltration in human diabetic nephropathy. Nephrol Dial Transplant.
2004; 19(3):602-7.
[53] Eadon MT1, Hack BK, Alexander JJ, Xu C, Dolan ME, Cunningham
PN., Cell cycle arrest in a model of colistin nephrotoxicity.
Physiol Genomics. 2013; 1;45(19):877-88.
32
[54] Ka SM1, Kuoping Chao L2, Lin JC3, Chen ST4, Li WT5, Lin CN6,
Cheng JC6, Jheng HL3, Chen A3, Hua KF7. A low toxicity synthetic
cinnamaldehyde derivative ameliorates renal inflammation in mice by
inhibiting NLRP3 inflammasome and its related signaling pathways.
Free Radical Biology & Medicine. 2016 Feb;91:10-24.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top