跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/17 19:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡明修
研究生(外文):TSAI, MING-HSIU
論文名稱:穗花杉雙黃酮減緩IL-1β和尿酸結晶誘發之關節炎
論文名稱(外文):Amentoflavone Attenuates IL-1β and Urate Crystal-Induced Joint Inflammation
指導教授:彭亦仁王誌謙
指導教授(外文):PENG, YI-JENWANG, CHIH-CHIEN
口試委員:彭亦仁夏堪臺鄭珈毘
口試委員(外文):PENG, YI-JENHSIA, KAN-TAICHENG, CHIA-PI
口試日期:2019-05-10
學位類別:碩士
校院名稱:國防醫學院
系所名稱:病理及寄生蟲學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:80
中文關鍵詞:穗花杉雙黃酮尿酸結晶關節炎人類軟骨細胞巨噬細胞
外文關鍵詞:amentoflavoneIL-1βuratechondrocytemacrophage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
退化性關節炎是一種慢性退化的關節疾病,其中乙型第一介白素 (IL-1β) 是一種強效的細胞介質,會促使其他分解酶及發炎介質合成釋放,破壞軟骨造成患者行動不便影響生活品質。痛風性關節炎是由沉積在關節中的尿酸結晶所引起,巨噬細胞吞噬尿酸結晶後活化NLRP3發炎小體,進而分泌出IL-1β,引發後續的發炎反應。退化性和痛風性關節炎最終都會導致關節的破壞並造成疼痛。穗花杉雙黃酮 (amentoflavone) 屬於雙黃酮類化合物,許多文獻指出其具有抗發炎和抗氧化的特性。本研究的目的在於探討amentoflavone對退化性和痛風性關節炎是否具有療效。
實驗結果發現amentoflavone經由調控轉錄因子NF-κB及AP-1路徑,抑制人類軟骨細胞受IL-1β刺激所誘發之發炎蛋白、金屬基質蛋白酶,以及亞硝酸化氧化壓力和氧化壓力,可能透過抑制Akt路徑來加強自噬作用,減緩退化性關節炎。痛風性關節炎的細胞實驗顯示amentoflavone能夠抑制巨噬細胞受尿酸結晶刺激所活化的NLRP3發炎小體路徑。
綜合以上結果,amentoflavon具有良好的抗發炎和抗氧化能力,可做為治療退化性和痛風性關節炎的標的藥物,但仍需進一步以藥物動力學及動物實驗證實。
Osteoarthritis (OA) is a chronic degenerative joint disorder with progressive cartilage destruction and joint dysfunction. Interleukin (IL)-1β is one of the potent cytokines that triggers the synthesis and release of catabolic enzymes and inflammatory mediators. Gouty arthritis (GA) results from monosodium urate (MSU) crystal deposition in joint tissues. MSU crystals are phagocytosed by macrophages and activate the NLRP3 inflammasome, leading to produce IL-1β, which induces inflammatory response. Osteoarthritis and gouty arthritis both ended up in joint destruction and pain. Amentoflavone is one of the flavonoids which has been reported to exert anti-inflammatory and anti-oxidant properties.The aim of this study was to investigate the protective effects of amentoflavone on chondrocytes and macrophages in OA and GA models respectively.
Amentoflavone regulates the NF-κB and AP-1 pathway to inhibits the overexpression of COX-2, matrix metalloproteinases (MMPs) and iNOS in IL-1β induced chondrocytes, as well as the secretion of NO and ROS. Meanwhile, amentoflavone may enhance autophage by the inhibition of the Akt pathway. Amentoflavone can also reduce IL-1β secretion by inhibiting inflammasome pathway of NLRP3 and mature caspase-1 in MSU crystals-stimulated J774A.1 macrophages.
Collectively, this study demonstrates that amentoflavone may be of value in treatment of OA and GA through its anti-inflammatory and anti-oxidant activities.
正文目錄
中文摘要...VI
英文摘要...VII
第一章 緒論...1
1.1 退化性關節炎 (osteoarthritis, OA)...1
1.1.1 退化性關節炎的危險因子...2
1.1.2 退化性關節炎中的發炎介質...3
1.1.3 退化性關節炎與氧化壓力...4
1.1.4 退化性關節炎與自噬作用...6
1.1.5 退化性關節炎的治療...7
1.2 痛風性關節炎 (Gouty arthritis)...8
1.2.1 痛風性關節炎的危險因子...8
1.2.2 痛風與NLRP3發炎小體...9
1.2.3 痛風性關節炎的治療...10
1.3 穗花杉雙黃酮 (amentoflavone)...12
1.3.1 Amentoflavone的來源與特性...12
1.3.2 Amentoflavone的抗發炎和抗氧化能力...13
1.3.3 Amentoflavone的腫瘤抑制能力...14
1.3.4 Amentoflavone的抗衰老能力...15
1.3.5 Amentoflavone的抗病毒能力...15
1.3.6 Amentoflavone對中樞神經系統的影響...15
1.3.7 Amentoflavone對心血管系統的影響...16
1.4 研究動機...17
1.5 研究目的...17
第二章 材料與方法...18
2.1 實驗材料...18
2.1.1 化學藥品...18
2.1.2 抗體...19
2.1.3 引子...20
2.2 實驗方法...21
2.2.1 實驗設計流程圖...21
2.2.2 初級軟骨細胞培養 (Primary culture)...21
2.2.3 細胞毒殺性試驗 (MTT assay & LDH cytotoxicity assay)...22
2.2.4 活性氮化物測定 (Griess Reaction)...24
2.2.5 活性氧化物測定 (Reactive oxygen species measurement)...25
2.2.6 蛋白質萃取及定量...25
2.2.7 西方墨點法 (Western blotting)...27
2.2.8 明膠酵素活性分析 (Gelatin Zymography)...30
2.2.9 電泳移動偏移分析 (Electrophoretic mobility shift assay, EMSA)...31
2.2.10 統計分析...32
第三章 結果...34
3.1 Amentoflavone對於人類關節軟骨細胞的影響...34
3.1.1 Amentoflavone對於軟骨細胞生長情形的影響...34
3.1.2 Amentoflavone對IL-1β刺激軟骨細胞中發炎物質的影響...34
3.1.3 Amentoflavone對IL-1β刺激軟骨細胞中ROS的影響...35
3.1.4 Amentoflavone對IL-1β刺激軟骨細胞分泌MMPs的影響...36
3.1.5 Amentoflavone對IL-1β刺激軟骨細胞表面TLR的影響...37
3.1.6 Amentoflavone對IL-1β刺激軟骨細胞Akt、NF-κB p65及MAPK路徑的影響...37
3.1.7 Amentoflavone對IL-1β刺激軟骨細胞自噬作用的影響...38
3.1.8 Amentoflavone對轉譯因子的活化與抑制...39
3.2 Amentoflavone對於J774A.1巨噬細胞株的影響...40
3.1.1 Amentoflavone對於J774A.1巨噬細胞生長情形的影響...40
3.1.2 Amentoflavone對MSU刺激J774A.1巨噬細胞蛋白質表現的影響...40
第四章 討論...42
4.1 Amentoflavone與退化性關節炎...42
4.2 Amentoflavone抑制IL-1β刺激軟骨細胞之發炎反應...42
4.3 Amentoflavone可能影響的機轉...44
4.4 Amentoflavone抑制MSU刺激J774A.1巨噬細胞NLRP3發炎小體路徑...46
第五章 結論...48
第六章 參考文獻...49

圖目錄
圖 一、穗花杉雙黃酮的化學結構...12
圖 二、MTT assay評估amentoflavone對初級培養軟骨細胞的影響...55
圖 三、Amentoflavone對軟骨細胞iNOS和COX-2蛋白質表現量的影響...56
圖 四、Amentoflavone對軟骨細胞產生NO的影響...57
圖 五、Amentoflavone對軟骨細胞產生ROS的影響...58
圖 六、Gelatin zymography評估amentoflavone對軟骨細胞分泌MMP-2和MMP-9的影響...60
圖 七、Amentoflavone對軟骨細胞分泌MMP-1、MMP-3、MMP-13的影響...61
圖 八、Amentoflavone對軟骨細胞表面Toll-like receptor的影響...62
圖 九、Amentoflavone對IL-1β刺激下軟骨細胞訊息傳遞磷酸化的影響...63
圖 十、Amentoflavone對軟骨細胞LC3-II / I蛋白質表現量的影響...65
圖 十一、Amentoflavone對IL-1β刺激下軟骨細胞轉錄因子的影響...66
圖 十二、LDH cytotoxicity assay評估amentoflavone對J774A.1巨噬細胞生長的影響...67
圖 十三、Amentoflavone對J774A.1巨噬細胞蛋白質表現量的影響...68
圖 十四、Amentoflavone作用於細胞的路徑圖...70
1.Pelletier JP, Martel-Pelletier J, Abramson SB. Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum 2001; 44: 1237-1247.
2.Bijlsma JWJ, Berenbaum F, Lafeber FPJG. Osteoarthritis: an update with relevance for clinical practice. The Lancet 2011; 377: 2115-2126.
3.Hiligsmann M, Cooper C, Arden N, Boers M, Branco JC, Luisa Brandi M, et al. Health economics in the field of osteoarthritis: an expert's consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin Arthritis Rheum 2013; 43: 303-313.
4.Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1211-1259.
5.Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic Science of Articular Cartilage. Clinics in Sports Medicine 2017; 36: 413-425.
6.Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol 2011; 23: 471-478.
7.Zhang W, Nuki G, Moskowitz RW, Abramson S, Altman RD, Arden NK, et al. OARSI recommendations for the management of hip and knee osteoarthritis: part III: Changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis Cartilage 2010; 18: 476-499.
8.Loughlin J. The genetic epidemiology of human primary osteoarthritis: current status. Expert Rev Mol Med 2005; 7: 1-12.
9.Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther 2009; 11: 227.
10.Hart DJ, Doyle DV, Spector TD. Incidence and risk factors for radiographic knee osteoarthritis in middle-aged women: the Chingford Study. Arthritis Rheum 1999; 42: 17-24.
11.Andrianakos A, Trontzas P, Christoyannis F, Dantis P, Voudouris C, Georgountzos A, et al. Prevalence of rheumatic diseases in Greece: a cross-sectional population based epidemiological study. The ESORDIG Study. J Rheumatol 2003; 30: 1589-1601.
12.Leach RE, Baumgard S, Broom J. Obesity: its relationship to osteoarthritis of the knee. Clin Orthop Relat Res 1973: 271-273.
13.Dumond H, Presle N, Terlain B, Mainard D, Loeuille D, Netter P, et al. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum 2003; 48: 3118-3129.
14.Pereira D, Ramos E, Branco J. Osteoarthritis. Acta Med Port 2015; 28: 99-106.
15.Rahmati M, Mobasheri A, Mozafari M. Inflammatory mediators in osteoarthritis: A critical review of the state-of-the-art, current prospects, and future challenges. Bone 2016; 85: 81-90.
16.Gosset M, Berenbaum F, Levy A, Pigenet A, Thirion S, Saffar JL, et al. Prostaglandin E2 synthesis in cartilage explants under compression: mPGES-1 is a mechanosensitive gene. Arthritis Res Ther 2006; 8: R135.
17.Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 2011; 31: 986-1000.
18.Amar S, Smith L, Fields GB. Matrix metalloproteinase collagenolysis in health and disease. Biochim Biophys Acta Mol Cell Res 2017; 1864: 1940-1951.
19.Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci 2006; 11: 529-543.
20.Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 2006; 27: 639-645.
21.Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 1955; 217: 383-393.
22.Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2016; 1862: 576-591.
23.Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664-666.
24.Squadrito GL, Pryor WA. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 1998; 25: 392-403.
25.Henrotin YE, Bruckner P, Pujol JP. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 2003; 11: 747-755.
26.Davies CM, Guilak F, Weinberg JB, Fermor B. Reactive nitrogen and oxygen species in interleukin-1-mediated DNA damage associated with osteoarthritis. Osteoarthritis Cartilage 2008; 16: 624-630.
27.Abramson SB. Osteoarthritis and nitric oxide. Osteoarthritis and Cartilage 2008; 16: S15-S20.
28.He W, Cheng Y. Inhibition of miR-20 promotes proliferation and autophagy in articular chondrocytes by PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother 2018; 97: 607-615.
29.Dalbeth N, Merriman TR, Stamp LK. Gout. Lancet 2016; 388: 2039-2052.
30.Emmerson BT. The management of gout. N Engl J Med 1996; 334: 445-451.
31.Khanna D, Fitzgerald JD, Khanna PP, Bae S, Singh MK, Neogi T, et al. 2012 American College of Rheumatology guidelines for management of gout. Part 1: Systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care & Research 2012; 64: 1431-1446.
32.Kuo CF, Grainge MJ, Zhang W, Doherty M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol 2015; 11: 649-662.
33.Wilson L, Saseen JJ. Gouty Arthritis: A Review of Acute Management and Prevention. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 2016; 36: 906-922.
34.Hochberg MC, Thomas J, Thomas DJ, Mead L, Levine DM, Klag MJ. Racial differences in the incidence of gout. The role of hypertension. Arthritis Rheum 1995; 38: 628-632.
35.Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum 2011; 63: 3136-3141.
36.Neogi T. Clinical practice. Gout. N Engl J Med 2011; 364: 443-452.
37.Dehghan A, Kottgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 2008; 372: 1953-1961.
38.Taniguchi A, Urano W, Yamanaka M, Yamanaka H, Hosoyamada M, Endou H, et al. A common mutation in an organic anion transporter gene, SLC22A12, is a suppressing factor for the development of gout. Arthritis Rheum 2005; 52: 2576-2577.
39.Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. Alcohol intake and risk of incident gout in men: a prospective study. Lancet 2004; 363: 1277-1281.
40.Choi HK, Willett W, Curhan G. Fructose-rich beverages and risk of gout in women. JAMA 2010; 304: 2270-2278.
41.Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med 2004; 350: 1093-1103.
42.Dinesh P, Rasool M. Berberine, an isoquinoline alkaloid suppresses TXNIP mediated NLRP3 inflammasome activation in MSU crystal stimulated RAW 264.7 macrophages through the upregulation of Nrf2 transcription factor and alleviates MSU crystal induced inflammation in rats. Int Immunopharmacol 2017; 44: 26-37.
43.Jhang JJ, Lin JH, Yen GC. Beneficial Properties of Phytochemicals on NLRP3 Inflammasome-Mediated Gout and Complication. J Agric Food Chem 2018; 66: 765-772.
44.Richette P, Doherty M, Pascual E, Barskova V, Becce F, Castaneda-Sanabria J, et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis 2017; 76: 29-42.
45.Terkeltaub RA, Furst DE, Digiacinto JL, Kook KA, Davis MW. Novel evidence-based colchicine dose-reduction algorithm to predict and prevent colchicine toxicity in the presence of cytochrome P450 3A4/P-glycoprotein inhibitors. Arthritis Rheum 2011; 63: 2226-2237.
46.So A, De Smedt T, Revaz S, Tschopp J. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 2007; 9: R28.
47.Rees F, Jenkins W, Doherty M. Patients with gout adhere to curative treatment if informed appropriately: proof-of-concept observational study. Ann Rheum Dis 2013; 72: 826-830.
48.Okigawa M, Hwa CW, Kawano N, Rahman W. Biflavones in Selaginella species. Phytochemistry 1971; 10: 3286–3287.
49.Saroni Arwa P, Zeraik ML, Ximenes VF, da Fonseca LM, Bolzani Vda S, Siqueira Silva DH. Redox-active biflavonoids from Garcinia brasiliensis as inhibitors of neutrophil oxidative burst and human erythrocyte membrane damage. J Ethnopharmacol 2015; 174: 410-418.
50.Ishola IO, Chaturvedi JP, Rai S, Rajasekar N, Adeyemi OO, Shukla R, et al. Evaluation of amentoflavone isolated from Cnestis ferruginea Vahl ex DC (Connaraceae) on production of inflammatory mediators in LPS stimulated rat astrocytoma cell line (C6) and THP-1 cells. Journal of Ethnopharmacology 2013; 146: 440-448.
51.Oh J, Rho HS, Yang Y, Yoon JY, Lee J, Hong YD, et al. Extracellular Signal-Regulated Kinase Is a Direct Target of the Anti-Inflammatory Compound Amentoflavone Derived fromTorreya nucifera. Mediators of Inflammation 2013; 2013: 1-11.
52.Abdallah HM, Almowallad FM, Esmat A, Shehata IA, Abdel-Sattar EA. Anti-inflammatory activity of flavonoids from Chrozophora tinctoria. Phytochemistry Letters 2015; 13: 74-80.
53.Ndongo JT, Issa ME, Messi AN, Mbing JN, Cuendet M, Pegnyemb DE, et al. Cytotoxic flavonoids and other constituents from the stem bark of Ochna schweinfurthiana. Nat Prod Res 2015; 29: 1684-1687.
54.Pei JS, Liu CC, Hsu YN, Lin LL, Wang SC, Chung JG, et al. Amentoflavone induces cell-cycle arrest and apoptosis in MCF-7 human breast cancer cells via mitochondria-dependent pathway. In Vivo 2012; 26: 963-970.
55.Siveen KS, Kuttan G. Effect of amentoflavone, a phenolic component from Biophytum sensitivum, on cell cycling and apoptosis of B16F-10 melanoma cells. J Environ Pathol Toxicol Oncol 2011; 30: 301-309.
56.Lee JS, Lee MS, Oh WK, Sul JY. Fatty acid synthase inhibition by amentoflavone induces apoptosis and antiproliferation in human breast cancer cells. Biol Pharm Bull 2009; 32: 1427-1432.
57.Park NH, Lee CW, Bae JH, Na YJ. Protective effects of amentoflavone on Lamin A-dependent UVB-induced nuclear aberration in normal human fibroblasts. Bioorg Med Chem Lett 2011; 21: 6482-6484.
58.Lee CW, Na Y, Park NH, Kim HS, Ahn SM, Kim JW, et al. Amentoflavone inhibits UVB-induced matrix metalloproteinase-1 expression through the modulation of AP-1 components in normal human fibroblasts. Appl Biochem Biotechnol 2012; 166: 1137-1147.
59.Coulerie P, Nour M, Maciuk A, Eydoux C, Guillemot JC, Lebouvier N, et al. Structure-activity relationship study of biflavonoids on the Dengue virus polymerase DENV-NS5 RdRp. Planta Med 2013; 79: 1313-1318.
60.Ryu YB, Jeong HJ, Kim JH, Kim YM, Park JY, Kim D, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem 2010; 18: 7940-7947.
61.Ishola IO, Chatterjee M, Tota S, Tadigopulla N, Adeyemi OO, Palit G, et al. Antidepressant and anxiolytic effects of amentoflavone isolated from Cnestis ferruginea in mice. Pharmacol Biochem Behav 2012; 103: 322-331.
62.Ishola IO, Tota S, Adeyemi OO, Agbaje EO, Narender T, Shukla R. Protective effect of Cnestis ferruginea and its active constituent on scopolamine-induced memory impairment in mice: a behavioral and biochemical study. Pharm Biol 2013; 51: 825-835.
63.Jeong EJ, Hwang L, Lee M, Lee KY, Ahn MJ, Sung SH. Neuroprotective biflavonoids of Chamaecyparis obtusa leaves against glutamate-induced oxidative stress in HT22 hippocampal cells. Food Chem Toxicol 2014; 64: 397-402.
64.Zhang Z, Sun T, Niu JG, He ZQ, Liu Y, Wang F. Amentoflavone protects hippocampal neurons: anti-inflammatory, antioxidative, and antiapoptotic effects. Neural Regen Res 2015; 10: 1125-1133.
65.Zheng XK, Ning TL, Wang XL, Liu CX, Liu YY, Feng W-s. Effects of total flavonoids and amntoflavone isolated from Selaginella tamariscina on human umbilical vein endothelial cells proliferation and VEGF expression. Volume 462011.
66.Zheng XK, Liu CX, Zhai YY, Li LL, Wang XL, Feng WS. [Protection effect of amentoflavone in Selaginella tamariscina against TNF-alpha-induced vascular injury of endothelial cells]. Yao Xue Xue Bao 2013; 48: 1503-1509.
67.Pradit W, Chomdej S, Nganvongpanit K, Ongchai S. Chondroprotective potential of Phyllanthus amarus Schum. & Thonn. in experimentally induced cartilage degradation in the explants culture model. In Vitro Cell Dev Biol Anim 2015; 51: 336-344.
68.Khan NM, Haseeb A, Ansari MY, Haqqi TM. A wogonin-rich-fraction of Scutellaria baicalensis root extract exerts chondroprotective effects by suppressing IL-1beta-induced activation of AP-1 in human OA chondrocytes. Sci Rep 2017; 7: 43789.
69.Wahyudi LD, Jeong J, Yang H, Kim J-H. Amentoflavone-induced oxidative stress activates NF-E2-related factor 2 via the p38 MAP kinase-AKT pathway in human keratinocytes. The International Journal of Biochemistry & Cell Biology 2018; 99: 100-108.
70.Shen X, Niu X, Li G, Deng X, Wang J, Schaffner DW. Amentoflavone Ameliorates Streptococcus suis-Induced Infection In Vitro and In Vivo. Applied and Environmental Microbiology 2018; 84.
71.Felson DT. Clinical practice. Osteoarthritis of the knee. N Engl J Med 2006; 354: 841-848.
72.Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskelet Dis 2013; 5: 77-94.
73.Akyol S. Hydrogen Peroxide-Induced Oxidative Damage in Human Chondrocytes: The Prophylactic Effects of Hypericum Perforatum Linn Extract on Deoxyribonucleic acid Damage, Apoptosis and Matrix Remodeling by a Disintegrin-Like and Metalloproteinase With Thrombospondin Motifs Proteinases. Archives of Rheumatology 2014; 29: 203-214.
74.Frederick ED, Hausburg MA, Thomas GW, Rael LT, Brody E, Bar-Or D. The low molecular weight fraction of human serum albumin upregulates COX2, prostaglandin E2, and prostaglandin D2 under inflammatory conditions in osteoarthritic knee synovial fibroblasts. Biochem Biophys Rep 2016; 8: 68-74.
75.He XF, Li W, Zhu LM, Zhang JW. Investigation for effects of iNOS on biological function of chondrocytes in rats with post-traumatic osteoarthritis. Eur Rev Med Pharmacol Sci 2018; 22: 7140-7147.
76.Sakthivel KM, Guruvayoorappan C. Amentoflavone inhibits iNOS, COX-2 expression and modulates cytokine profile, NF-kappaB signal transduction pathways in rats with ulcerative colitis. Int Immunopharmacol 2013; 17: 907-916.
77.Alquraini A, Garguilo S, D’Souza G, Zhang LX, Schmidt TA, Jay GD, et al. The interaction of lubricin/proteoglycan 4 (PRG4) with toll-like receptors 2 and 4: an anti-inflammatory role of PRG4 in synovial fluid. Arthritis Research & Therapy 2015; 17.
78.Han BH, Lee YJ, Yoon JJ, Choi ES, Namgung S, Jin XJ, et al. Hwangryunhaedoktang exerts anti-inflammation on LPS-induced NO production by suppressing MAPK and NF- kappaB activation in RAW264.7 macrophages. J Integr Med 2017; 15: 326-336.
79.Kimura H, Yukitake H, Suzuki H, Tajima Y, Gomaibashi K, Morimoto S, et al. The chondroprotective agent ITZ-1 inhibits interleukin-1beta-induced matrix metalloproteinase-13 production and suppresses nitric oxide-induced chondrocyte death. J Pharmacol Sci 2009; 110: 201-211.
80.Carames B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum 2010; 62: 791-801.
81.Xue JF, Shi ZM, Zou J, Li XL. Inhibition of PI3K/AKT/mTOR signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomed Pharmacother 2017; 89: 1252-1261.
82.Tanida I, Ueno T, Kominami E. LC3 and Autophagy. Methods Mol Biol 2008; 445: 77-88.
83.McDermott M, Kingsbury S, Conaghan. The role of the NLRP3 inflammasome in gout. Journal of Inflammation Research 2011: 39.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top