跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/17 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:錢安安
研究生(外文):CIAN, AN-AN
論文名稱:以高碳酸血症體外細胞模式探討角膜疤痕抑制機轉
論文名稱(外文):The Effects of Hypercapnic Acidosis on TGF-β1-induced Fibrosis of Corneal Limbal Fibroblasts
指導教授:梁章敏
指導教授(外文):LIANG, CHANG-MIN
口試委員:陳怡潓蕭仁傑梁章敏
口試委員(外文):CHEN, YI-HUISHIAO, JEN-CHIEHLIANG, CHANG-MIN
口試日期:2019-05-02
學位類別:碩士
校院名稱:國防醫學院
系所名稱:航太及海底醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:55
中文關鍵詞:角膜纖維母細胞轉化生長因子-β1核轉錄因子-κB高碳酸血症酸中毒細胞遷移
外文關鍵詞:Corneal Fibroblasts (CF)Transforming Growth Factor Beta 1 (TGF-β1)Nuclear factor-kappa B (NF-κB)Hypercapnic acidosis (HCA)Cell migration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
前言:角膜組織在正常情況下不存在淋巴管和血管,創傷會引起的角膜完整性破壞、以及纖維母細胞的活化,可能引起新生血管、纖維化和瘢痕形成,導致視力損害。轉化生長因子-β(TGF-β)在角膜上皮損傷後通過促進纖維母細胞形成,α-SMA由纖維母細胞誘導活化, Smads蛋白已被證明是由TGF-β超家族成員特異性活化,並調節細胞生長、增殖、遷移和分化。高碳酸血症是血液中二氧化碳濃度異常升高的情況,過去的研究已經知道高碳酸血症酸中毒對許多器官都具有保護作用。目前還沒有有效的局部治療方法可以治癒角膜瘢痕,所以預防角膜疤痕的形成至關重要。
研究目的:以體外細胞模式,了解高碳酸血症酸中毒對於TGF-β1誘導的角膜纖維母細胞纖維化之影響及可能的機轉,以期提供一個能抑制角膜纖維化的策略。
材料與方法:使用人類角膜纖維母細胞(Corneal Fibroblast, CFs)以TGF-β1誘導角膜損傷,並給予不同時間的CO2通氣,分別為控制組(5% CO2)、HCA組 (10% 1小時)、TGF-β1組(TGF-β1 10 ng/ml、5% CO2)、TGF-β1+HCA 1小時組(TGF-β1 10 ng/ml、10% CO2 1小時)、TGF-β1+HCA 2小時組(TGF-β1 10 ng/ml、10% CO2 2小時)、以及TGF-β1+HCA 3小時組(TGF-β1 10 ng/ml、10% CO2 3小時) ,使用西方墨點法、細胞免疫螢光染色、細胞遷移試驗等方式進行研究。
研究結果:HCA處理可以藉由降低不論是經典途徑或是替代途徑之NF-κB信號路徑的活化,以及抑制TGF-β/Smad訊號路徑的活化達到抑制纖維化發生的情形,並且HCA處理可以降低TGF-β1誘導的角膜纖維母細胞的遷移作用、細胞入侵作用、以及對膠原凝膠的收縮情形。
結論:HCA可以透過抑制IKK-NF-κB以及TGF-β/Smad訊號傳遞路徑的活化來減少角膜纖維母細胞的纖維化情形,並達到抑制細胞遷移的作用。
Background: The corneal tissue does not have lymphatic vessels and blood vessels under normal conditions, the destruction of corneal integrity caused by trauma, and the activation of fibroblasts may cause neovascularization, fibrosis and scar formation, resulting in visual impairment. Transforming growth factor beta (TGF-β) promotes fibroblast formation after corneal epithelial damage, and α-SMA is activated by fibroblasts. Smads have been shown to be specifically activated by TGF-β superfamily members and regulate cell growth and proliferation. , migration and differentiation. Hypercapnia is an abnormally elevated concentration of carbon dioxide in the blood, and past studies have known that hypercapnia acidosis has protective effects on many organs. At present, there is no effective local treatment to cure corneal scars, so it is important to prevent the formation of corneal scars.
Objective: To understand the effects of hypercapnic acidosis on TGF-β1-induced fibrosis of corneal fibroblasts and elucidate possible mechanisms for a strategy of anti-corneal fibrosis.
Materials and Methods: Corneal injury was induced by TGF-β1 using human corneal fibroblasts (CFs), and CO2 ventilation was given at different times, which were control group (5% CO2), HCA group (10% 1 hour), TGF-β1 group (TGF-β1 10 ng/ml, 5% CO2), TGF-β1+HCA 1 hour group (TGF-β1 10 ng/ml, 10% CO2 1 hour), TGF-β1+HCA 2 hour group (TGF-β1 10 ng/ml, 10% CO2 for 2 hours), and TGF-β1+HCA for 3 hour group (TGF-β1 10 ng/ml, 10% CO2 for 3 hours), using Western blotting, cell immunofluorescence staining, cell migration experiments and other methods were conducted.
Main Results: HCA treatment inhibited TGF-β1 induced corneal fibroblast migration, cell invasion, and contraction of collagen gels. The TGF-β1 induced activation of the NF-κB signaling pathway, both classical pathway and the alternative pathway, and Smad signaling pathway were suppressed by HCA treatment.
Conclusions: HCA can reduce TGF-β1 induced corneal fibroblast fibrosis by inhibiting IKK-NF-κB and Smad signaling pathways. It could be a potential therapy for corneal fibrosis.
第一章、緒言 1
第一節、 角膜纖維母細胞 1
壹、 角膜 1
貳、 角膜輪部 2
參、 角膜緣纖維母細胞 2
第二節、 轉化生長因子-β1 4
第三節、 核轉錄因子-κB 6
壹、 經典NF-κB路徑 7
貳、 替代NF-κB路徑 7
第四節、 TGF-β與NF-κB信號傳導路徑 8
第五節、 高碳酸血症 8
壹、 高碳酸血症酸中毒 8
貳、 高碳酸血症的保護機制 10
第六節、 研究目的 11
第二章、材料與方法 12
第一節、 實驗材料及設備 12
壹、 藥品及試劑 12
貳、 儀器 12
參、 細胞培養 12
肆、 細胞冷凍保存 13
伍、 細胞解凍 14
陸、 細胞計數 14
第二節、 實驗流程及組別 15
壹、 實驗流程 15
貳、 實驗組別 15
第三節、 細胞遷移試驗 16
壹、 細胞刮傷實驗 16
貳、 細胞入侵 17
參、 膠原蛋白膠收縮 17
第四節、 細胞免疫螢光染色 18
第五節、 西方墨點法 19
壹、 蛋白質萃取 19
貳、 蛋白質濃度測定 20
參、 蛋白質轉漬 20
第六節、 統計分析 21
第三章、結果 23
第一節、 HCA處理對TGF-β1誘導角膜纖維母細胞膠原凝膠收縮影響23
第二節、 HCA處理對TGF-β1誘導角膜纖維母細胞的遷移影響 24
壹、 細胞刮傷實驗 24
貳、 細胞入侵 25
第三節、 HCA處理對TGF-β1誘導角膜纖維母細胞纖維化的影響 25
第四節、 HCA處理對TGF-β1誘導角膜纖維母細胞NF-κB信號路徑的影響 26
壹、 經典途徑 26
貳、 替代途徑 27
參、 NF-κB在核內的表現 27
第五節、 HCA處理對TGF-β1誘導角膜纖維母細胞SMAD信號路徑的影響 28
第四章、討論 41
第一節、 HCA與NF-κB的關係 41
第二節、 HCA與角膜傷口癒合的關係 42
第三節、 高碳酸血症與酸中毒 42
第四節、 未來展望 44
第五章、結論 46
第六章、參考文獻 47
1. D.W. DelMonte & T. Kim (2011). Anatomy and physiology of the cornea. Journal of Cataract and Refractive Surgery, 37(3):588-598.
2. G. Pellegrini, C.E. Traverso, A.T. Franzi, M. Zingirian, R. Cancedda & M. De Luca (1997). Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. The Lancet, 349(9057):990-993.
3. K.R. Katikireddy, R. Dana, & U.V. Jurkunas (2014) Differentiation potential of limbal fibroblasts and bone marrow mesenchymal stem cells to corneal epithelial cells. Stem Cells, 32(3):717-729.
4. S. Burman & V. Sangwan (2008). Cultivated limbal stem cell transplantation for ocular surface reconstruction. Clinical Ophthalmology, 2(3):489-502.
5. N. Polisetty, A. Fatima, S.L. Madhira, V.S. Sangwan, & G.K. Vemuganti (2008). Mesenchymal cells from limbal stroma of human eye. Molecular Vision 14:431-442.
6. S. Dravida, R. Pal, A. Khanna, S.P.Tipnis, G. Ravindran, & F. Khan (2005). The transdifferentiation potential of limbal fibroblast-like cells. Developmental Brain Research, 160(2):239-251.
7. E.A. Blazejewska, U. Schlötzer-Schrehardt, M. Zenkel, B. Bachmann, E. Chankiewitz, C. Jacobi et al. (2009). Corneal Limbal Microenvironment Can Induce Transdifferentiation of Hair Follicle Stem Cells into Corneal Epithelial-like Cells. Stem Cells. 27(3):642-652.
8. S. Ahmad, R. Stewart, S. Yung, S. Kolli, L. Armstrong, M. Stojkovic et al. (2007). Differentiation of Human Embryonic Stem Cells into Corneal Epithelial‐Like Cells by In Vitro Replication of the Corneal Epithelial Stem Cell Niche. Stem Cells, 25(5):1145-1155.
9. W. Li, Y. Hayashida, Y.T. Chen, & S.C. Tseng (2007). Niche regulation of corneal epithelial stem cells at the limbus. Cell Research, 17(1):26-36.
10. H. Amirjamshidi, B.Y. Milani, H.M. Sagha, A. Movahedan, M.A. Shafiq, R.M. Lavker et al. (2011). Djalilian, Limbal fibroblast conditioned media: a non-invasive treatment for limbal stem cell deficiency. Molecular vision, 17:658-666.
11. M. Notara, A. J. Shortt, G. Galatowicz, V. Calder, & J.T. Daniels (2010). IL6 and the human limbal stem cell niche: A mediator of epithelial-stromal interaction. Stem Cell Research, 5(3):188-200.
12. C.J. Parsons, M. Takashima, & R.A. Rippe (2007). Molecular mechanisms of hepatic fibrogenesis. J Gastroenterology Hepatology, Suppl 1:S79-84.
13. J.J. Tomasek, G. Gabbiani, B. Hinz, C. Chaponnier, & R.A. Brown (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology, 3(5):349-363.
14. M. Takeji, T. Moriyama, S. Oseto, N. Kawada, M. Hori, E. Imai et al. (2006). Smooth muscle α-actin deficiency in myofibroblasts leads to enhanced renal tissue fibrosis. The Journal of Biological Chemistry, 281(52):40193-40200.
15. P. ten Dijke, & C.S. Hill (2004). New insights into TGF-β-Smad signaling. Trends in Biochemical Sciences, 29(5):265-273.
16. R. Derynck, & Y.E. Zhang (2003). Smad-dependent and Smad-independent pathways in TGF-β family signaling. Nature, 425(6958):577-584
17. A Hata, & Y.G. Chen (2016). TGF-β Signaling from Receptors to Smads. Cold Spring Harbor Perspectives in Biology, 8(9): a022061.
18. J. Nickel, P. ten Dijke, & T.D. Mueller (2018). TGF-β family co-receptor function and signaling. Acta Biochimica et Biophysica Sinica, 50(1):12-36.
19. Z. Wu, Lj Sofronic-Milosavljevic, I. Nagano, & Y. Takahashi (2008). Trichinella spiralis: nurse cell formation with emphasis on analogy to muscle cell repair. Parasites and Vectors, 1(1):27.
20. G. Monteleone, J. Mann, I. Monteleone, P. Vavassori, R. Bremner, M. Fantini et al. (2004). A failure of transforming growth factor-beta1 negative regulation maintains sustained NF-κB activation in gut inflammation. The Journal of Biological Chemistry, 279(6):3925-3932.
21. C.R. Kim, Y.M. Kim, M.K. Lee, I.H. Kim, Y.H. Choi, & T.J. Nam (2017). Pyropia yezoensis peptide promotes collagen synthesis by activating the TGF-β/Smad signaling pathway in the human dermal fibroblast cell line Hs27. International Journal of Molecular Medicine, 39(1):31-38.
22. J. Massagué, J. Seoane, & D. Wotton (2005). Smad transcription factors. Genes and Development, 19(23):2783-2810.
23. P. Singh, J.D. Wig, & R. Srinivasan (2011). The Smad family and its role in pancreatic cancer. Indian Journal of Cancer, 48(3):351-360.
24. K. Nakamura, D. Kurosaka, H. Bissen-Miyajima, & K. Tsubota (2001). Intact corneal epithelium is essential for the prevention of stromal haze after laser assisted in situ keratomileusis. British Journal of Ophthalmology, 85(2):209-213.
25. M.B. Grant, P.T. Khaw, G.S. Schultz, J.L. Adams, & R.W. Shimizu (1992). Effects of epidermal growth factor, fibroblast growth factor, and transforming growth factor-beta on corneal cell chemotaxis. Investigative Ophthalmology and Visual Science, 33(12):3292-3301.
26. D.Q. Li, & S.C. Tseng (1995). Three patterns of cytokine expression potentially involved in epithelial-fibroblast interactions of human ocular surface. Journal of Cellular Physiology, 163(1):61-79.
27. M. Vesaluoma, A.M. Teppo, C. Grönhagen-Riska, & T. Tervo (1997). Release of TGF-beta 1 and VEGF in tears following photorefractive keratectomy. Current Eye Research, 16(1):19-25.
28. J.V. Jester, P.A. Barry-Lane, H.D. Cavanagh, & W.M. Petroll (1996). Induction of alpha-smooth muscle actin expression and myofibroblast transformation in cultured corneal keratocytes. Cornea, 15(5):505-516.
29. M.J. May, & S. Ghosh (1998). Signal transduction through NF-κB. Immunology Today, 19(2):80-88.
30. F.Y. Teng, S.K. Wu, Y.Y. Hsia, W.B. Kao, & Y.D. Hsieh (2006). Modulation of inflammation, apoptosis, and oncogenesis by the nuclear transcription factor, NF-κB. Chinese Journal of Dental Research, 25(1):12-24
31. A.S. Baldwin (2001). Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. The Journal of Clinical Investigation, 107(3):241-246.
32. J. Li, X.D. Johnson, S. Iazvovskaia, A. Tan, A. Lin, & M.B. Hershenson (2003). Signaling intermediates required for NF-κB activation and IL-8 expression in CF bronchial epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 284(2):307-315.
33. L. Korsensky, S. Haif, R. Heller, S. Rabinovitz, J. Haddad-Halloun, N. Dahan et al. (2019). The tumor suppressor Sef is a scaffold for the classical NF-κB/RELA:P50 signaling module. Cellular Signalling, 59:110-121.
34. M. Karin, & Y. Ben-Neriah (2000). Phosphorylation meets ubiquitination: the control of NF-κB activity. Annual Review of Immunology, 18:621-663.
35. F. Weih, D. Carrasco, S.K. Durham, D.S. Barton, C.A. Rizzo, R.P. Ryseck et al. (1995). Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-κB/Rel family. Cell, 80(2):331-340.
36. N.J. Solan, H. Miyoshi, E.M. Carmona, G.D. Bren, & C.V. Paya (2002). RelB cellular regulation and transcriptional activity are regulated by p100. The Journal of Biological Chemistry, 277(2):1405-1418.
37. S.C. Sun (2012). The noncanonical NF-κB pathway. Immunological Reviews, 246(1):125-140.
38. G. Xiao, E.W. Harhaj, & S.C. Sun (2001). NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Molecular Cell, 7(2):401-409.
39. V. Baud, & D. Collares (2016). Post-Translational Modifications of RelB NF-κB Subunit and Associated Functions. Cells, 5(2):E22.
40. C. Freudlsperger, Y. Bian, S. Contag Wise, J. Burnett, J. Coupar, X. Yang et al. (2013). TGF-β and NF-κB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers. Oncogene, 32(12):1549-1559.
41. R.G. Brower, M.A. Matthay, A. Morris, D. Schoenfeld, B.T. Thompson, & A. Wheeler (2000). Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The New England Journal of Medicine, 342(18):1301-1308.
42. D. OToole, P. Hassett, M. Contreras, B.D. Higgins, S.T. McKeown, D.F. McAuley et al. (2009) Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF-κB dependent mechanism. Thorax, 64(11):976-982.
43. R. Tiruvoipati, D. Pilcher, H. Buscher, J. Botha, & M. Bailey (2017). Effects of Hypercapnia and Hypercapnic Acidosis on Hospital Mortality in Mechanically Ventilated Patients. Critical Care Medicine, 45(7):649-656.
44. K.G. Hickling, J. Walsh, S. Henderson, & R. Jackson (1994). Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: A prospective study. Critical Care Medicine, 22(10):1568-1578.
45. J. Costello, B. Higgins, M. Contreras, M.N. Chonghaile, P. Hassett, D. OToole et al. (2009). Hypercapnic acidosis attenuates shock and lung injury in early and prolonged systemic sepsis. Critical Care Medicine, 37(8):2412-2420.
46. J.G. Laffey, R.P. Jankov, D. Engelberts, A.K. Tanswell, M. Post, T. Lindsay et al. (2003). Effects of therapeutic hypercapnia on mesenteric ischemia-reperfusion injury. American Journal of Respiratory and Critical Care Medicine, 168(11):1383-1390.
47. J.G. Laffey, M. Tanaka, D. Engelberts, X. Luo, S. Yuan, A.K. Tanswell et al. (2000). Therapeutic hypercapnia reduces pulmonary and systemic injury following in vivo lung reperfusion. American Journal of Respiratory and Critical Care Medicine, 162(6):2287-2294.
48. S.E. Sinclair, D.A. Kregenow, W.J. Lamm, I.R. Starr, E.Y. Chi, & M.P. Hlastala (2002). Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. American Journal of Respiratory and Critical Care Medicine, 166(3):403-408.
49. S.Y. Wu, M.H. Li, F.C. Ko, G.C. Wu, K.L. Huang, & S.J. Chu (2013). Protective effect of hypercapnic acidosis in ischemia-reperfusion lung injury is attributable to upregulation of heme oxygenase-1. PLoS One, 8(9):e74742.
50. K. Shibata, N. Cregg, D. Engelberts, A. Takeuchi, L. Fedorko, & B.P. Kavanagh (1998). Hypercapnic acidosis may attenuate acute lung injury by inhibition of endogenous xanthine oxidase. American Journal of Respiratory and Critical Care Medicine, 158:1578-1584.
51. P. Boekstegers, & M. Weiss (1990). Tissue oxygen partial pressure distribution within the human skeletal muscle during hypercapnia. Advances in Experimental Medicine and Biology, 277:525-531.
52. W.C. Tang, M.H. Weil, R.J. Gazmuri, J. Bisera, & E.C. Rackow (1991). Reversible impairment of myocardial contractility due to hypercarbic acidosis in the isolated perfused rat heart. Critical Care Medicine, 19(2):218-224.
53. V.L. Hood, & R.L. Tannen (1998). Protection of acid-base balance by pH regulation of acid production. The New England Journal of Medicine, 339(12):819-826.
54. R.C. Vannucci, J. Towfighi, D.F. Heitjan, & R.M. Brucklacher (1995). Carbon dioxide protects the perinatal brain from hypoxic-ischemic damage: an experimental study in the immature rat. Pediatrics, 95(6):868-874.
55. M. Kitakaze, M.L. Weisfeldt, & E. Marban (1988). Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. The Journal of Clinical Investigation, 82(3):920-927.
56. J.G. Laffey, D. Engelberts, & B.P. Kavanagh (2000). Buffering hypercapnic acidosis worsens acute lung injury. American Journal of Respiratory and Critical Care Medicine, 161(1):141-146.
57. L.T. Lin, J.T. Chen, M.C. Tai, Y.H. Chen, C.L. Chen, S.I. Pao et al. (2019). Protective effects of hypercapnic acidosis on Ischemia-reperfusion-induced retinal injury. PLoS One, 14(1):e0211185.
58. S.Y. Wu, C.P. Wu, B.H. Kang, M.H. Li, S.J. Chu, & K.L. Huang (2012). Hypercapnic acidosis attenuates reperfusion injury in isolated and perfused rat lungs. Critical Care Medicine, 40(2):553-559.
59. M. Karin, & M. Delhase (2000). The IκB kinase (IKK) and NF-κB: key elements of proinflammatory signaling. Seminars in Immunology, 12(1):85-98.
60. K. Takeshita, Y. Suzuki, K. Nishio, O. Takeuchi, K. Toda, H. Kudo et al. (2003). Hypercapnic acidosis attenuates endotoxin-induced nuclear factor-κB activation. American Journal of Respiratory and Critical Care Medicine, 29(1):124-132.
61. H. Miyagi, S.M. Thomasy, P. Russell, & C.J. Murphy (2018). The role of hepatocyte growth factor in corneal wound healing. Experimental Eye Research, 166:49-55.
62. C.M. Liang, Y.J. Chen, & M.C. Tai. (2017, November). The effects of Hypercapnic Acidosis on Corneal Epithelium. In NTUH International Convention Center, The 58th annual meeting of the ophthalmological society of Taiwan, Taipei.
63. K.M. Oliver, C.R. Lenihan, U. Bruning, A. Cheong, J.G. Laffey, P. McLoughlin et al. (2012). Hypercapnia induces cleavage and nuclear localization of RelB protein, giving insight into CO2 sensing and signaling. The Journal of Biological Chemistry, 287(17):14004-14011
64. M. Kitakaze, S. Takashima, H. Funaya, T. Minamino, K. Node, Y. Shinozaki et al. (1997). Temporary acidosis during reperfusion limits myocardial infarct size in dogs. American Journal of Physiology, 272:H2071-2078.
65. N. Wang, K.L. Gates, H. Trejo, S. Favoreto, R.P. Schleimer, J.I. Sznajder et al. (2010). Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. The FASEB Journal, 24(7):2178-2190.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top