|
1. D.W. DelMonte & T. Kim (2011). Anatomy and physiology of the cornea. Journal of Cataract and Refractive Surgery, 37(3):588-598. 2. G. Pellegrini, C.E. Traverso, A.T. Franzi, M. Zingirian, R. Cancedda & M. De Luca (1997). Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. The Lancet, 349(9057):990-993. 3. K.R. Katikireddy, R. Dana, & U.V. Jurkunas (2014) Differentiation potential of limbal fibroblasts and bone marrow mesenchymal stem cells to corneal epithelial cells. Stem Cells, 32(3):717-729. 4. S. Burman & V. Sangwan (2008). Cultivated limbal stem cell transplantation for ocular surface reconstruction. Clinical Ophthalmology, 2(3):489-502. 5. N. Polisetty, A. Fatima, S.L. Madhira, V.S. Sangwan, & G.K. Vemuganti (2008). Mesenchymal cells from limbal stroma of human eye. Molecular Vision 14:431-442. 6. S. Dravida, R. Pal, A. Khanna, S.P.Tipnis, G. Ravindran, & F. Khan (2005). The transdifferentiation potential of limbal fibroblast-like cells. Developmental Brain Research, 160(2):239-251. 7. E.A. Blazejewska, U. Schlötzer-Schrehardt, M. Zenkel, B. Bachmann, E. Chankiewitz, C. Jacobi et al. (2009). Corneal Limbal Microenvironment Can Induce Transdifferentiation of Hair Follicle Stem Cells into Corneal Epithelial-like Cells. Stem Cells. 27(3):642-652. 8. S. Ahmad, R. Stewart, S. Yung, S. Kolli, L. Armstrong, M. Stojkovic et al. (2007). Differentiation of Human Embryonic Stem Cells into Corneal Epithelial‐Like Cells by In Vitro Replication of the Corneal Epithelial Stem Cell Niche. Stem Cells, 25(5):1145-1155. 9. W. Li, Y. Hayashida, Y.T. Chen, & S.C. Tseng (2007). Niche regulation of corneal epithelial stem cells at the limbus. Cell Research, 17(1):26-36. 10. H. Amirjamshidi, B.Y. Milani, H.M. Sagha, A. Movahedan, M.A. Shafiq, R.M. Lavker et al. (2011). Djalilian, Limbal fibroblast conditioned media: a non-invasive treatment for limbal stem cell deficiency. Molecular vision, 17:658-666. 11. M. Notara, A. J. Shortt, G. Galatowicz, V. Calder, & J.T. Daniels (2010). IL6 and the human limbal stem cell niche: A mediator of epithelial-stromal interaction. Stem Cell Research, 5(3):188-200. 12. C.J. Parsons, M. Takashima, & R.A. Rippe (2007). Molecular mechanisms of hepatic fibrogenesis. J Gastroenterology Hepatology, Suppl 1:S79-84. 13. J.J. Tomasek, G. Gabbiani, B. Hinz, C. Chaponnier, & R.A. Brown (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology, 3(5):349-363. 14. M. Takeji, T. Moriyama, S. Oseto, N. Kawada, M. Hori, E. Imai et al. (2006). Smooth muscle α-actin deficiency in myofibroblasts leads to enhanced renal tissue fibrosis. The Journal of Biological Chemistry, 281(52):40193-40200. 15. P. ten Dijke, & C.S. Hill (2004). New insights into TGF-β-Smad signaling. Trends in Biochemical Sciences, 29(5):265-273. 16. R. Derynck, & Y.E. Zhang (2003). Smad-dependent and Smad-independent pathways in TGF-β family signaling. Nature, 425(6958):577-584 17. A Hata, & Y.G. Chen (2016). TGF-β Signaling from Receptors to Smads. Cold Spring Harbor Perspectives in Biology, 8(9): a022061. 18. J. Nickel, P. ten Dijke, & T.D. Mueller (2018). TGF-β family co-receptor function and signaling. Acta Biochimica et Biophysica Sinica, 50(1):12-36. 19. Z. Wu, Lj Sofronic-Milosavljevic, I. Nagano, & Y. Takahashi (2008). Trichinella spiralis: nurse cell formation with emphasis on analogy to muscle cell repair. Parasites and Vectors, 1(1):27. 20. G. Monteleone, J. Mann, I. Monteleone, P. Vavassori, R. Bremner, M. Fantini et al. (2004). A failure of transforming growth factor-beta1 negative regulation maintains sustained NF-κB activation in gut inflammation. The Journal of Biological Chemistry, 279(6):3925-3932. 21. C.R. Kim, Y.M. Kim, M.K. Lee, I.H. Kim, Y.H. Choi, & T.J. Nam (2017). Pyropia yezoensis peptide promotes collagen synthesis by activating the TGF-β/Smad signaling pathway in the human dermal fibroblast cell line Hs27. International Journal of Molecular Medicine, 39(1):31-38. 22. J. Massagué, J. Seoane, & D. Wotton (2005). Smad transcription factors. Genes and Development, 19(23):2783-2810. 23. P. Singh, J.D. Wig, & R. Srinivasan (2011). The Smad family and its role in pancreatic cancer. Indian Journal of Cancer, 48(3):351-360. 24. K. Nakamura, D. Kurosaka, H. Bissen-Miyajima, & K. Tsubota (2001). Intact corneal epithelium is essential for the prevention of stromal haze after laser assisted in situ keratomileusis. British Journal of Ophthalmology, 85(2):209-213. 25. M.B. Grant, P.T. Khaw, G.S. Schultz, J.L. Adams, & R.W. Shimizu (1992). Effects of epidermal growth factor, fibroblast growth factor, and transforming growth factor-beta on corneal cell chemotaxis. Investigative Ophthalmology and Visual Science, 33(12):3292-3301. 26. D.Q. Li, & S.C. Tseng (1995). Three patterns of cytokine expression potentially involved in epithelial-fibroblast interactions of human ocular surface. Journal of Cellular Physiology, 163(1):61-79. 27. M. Vesaluoma, A.M. Teppo, C. Grönhagen-Riska, & T. Tervo (1997). Release of TGF-beta 1 and VEGF in tears following photorefractive keratectomy. Current Eye Research, 16(1):19-25. 28. J.V. Jester, P.A. Barry-Lane, H.D. Cavanagh, & W.M. Petroll (1996). Induction of alpha-smooth muscle actin expression and myofibroblast transformation in cultured corneal keratocytes. Cornea, 15(5):505-516. 29. M.J. May, & S. Ghosh (1998). Signal transduction through NF-κB. Immunology Today, 19(2):80-88. 30. F.Y. Teng, S.K. Wu, Y.Y. Hsia, W.B. Kao, & Y.D. Hsieh (2006). Modulation of inflammation, apoptosis, and oncogenesis by the nuclear transcription factor, NF-κB. Chinese Journal of Dental Research, 25(1):12-24 31. A.S. Baldwin (2001). Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. The Journal of Clinical Investigation, 107(3):241-246. 32. J. Li, X.D. Johnson, S. Iazvovskaia, A. Tan, A. Lin, & M.B. Hershenson (2003). Signaling intermediates required for NF-κB activation and IL-8 expression in CF bronchial epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 284(2):307-315. 33. L. Korsensky, S. Haif, R. Heller, S. Rabinovitz, J. Haddad-Halloun, N. Dahan et al. (2019). The tumor suppressor Sef is a scaffold for the classical NF-κB/RELA:P50 signaling module. Cellular Signalling, 59:110-121. 34. M. Karin, & Y. Ben-Neriah (2000). Phosphorylation meets ubiquitination: the control of NF-κB activity. Annual Review of Immunology, 18:621-663. 35. F. Weih, D. Carrasco, S.K. Durham, D.S. Barton, C.A. Rizzo, R.P. Ryseck et al. (1995). Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-κB/Rel family. Cell, 80(2):331-340. 36. N.J. Solan, H. Miyoshi, E.M. Carmona, G.D. Bren, & C.V. Paya (2002). RelB cellular regulation and transcriptional activity are regulated by p100. The Journal of Biological Chemistry, 277(2):1405-1418. 37. S.C. Sun (2012). The noncanonical NF-κB pathway. Immunological Reviews, 246(1):125-140. 38. G. Xiao, E.W. Harhaj, & S.C. Sun (2001). NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Molecular Cell, 7(2):401-409. 39. V. Baud, & D. Collares (2016). Post-Translational Modifications of RelB NF-κB Subunit and Associated Functions. Cells, 5(2):E22. 40. C. Freudlsperger, Y. Bian, S. Contag Wise, J. Burnett, J. Coupar, X. Yang et al. (2013). TGF-β and NF-κB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers. Oncogene, 32(12):1549-1559. 41. R.G. Brower, M.A. Matthay, A. Morris, D. Schoenfeld, B.T. Thompson, & A. Wheeler (2000). Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The New England Journal of Medicine, 342(18):1301-1308. 42. D. OToole, P. Hassett, M. Contreras, B.D. Higgins, S.T. McKeown, D.F. McAuley et al. (2009) Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF-κB dependent mechanism. Thorax, 64(11):976-982. 43. R. Tiruvoipati, D. Pilcher, H. Buscher, J. Botha, & M. Bailey (2017). Effects of Hypercapnia and Hypercapnic Acidosis on Hospital Mortality in Mechanically Ventilated Patients. Critical Care Medicine, 45(7):649-656. 44. K.G. Hickling, J. Walsh, S. Henderson, & R. Jackson (1994). Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: A prospective study. Critical Care Medicine, 22(10):1568-1578. 45. J. Costello, B. Higgins, M. Contreras, M.N. Chonghaile, P. Hassett, D. OToole et al. (2009). Hypercapnic acidosis attenuates shock and lung injury in early and prolonged systemic sepsis. Critical Care Medicine, 37(8):2412-2420. 46. J.G. Laffey, R.P. Jankov, D. Engelberts, A.K. Tanswell, M. Post, T. Lindsay et al. (2003). Effects of therapeutic hypercapnia on mesenteric ischemia-reperfusion injury. American Journal of Respiratory and Critical Care Medicine, 168(11):1383-1390. 47. J.G. Laffey, M. Tanaka, D. Engelberts, X. Luo, S. Yuan, A.K. Tanswell et al. (2000). Therapeutic hypercapnia reduces pulmonary and systemic injury following in vivo lung reperfusion. American Journal of Respiratory and Critical Care Medicine, 162(6):2287-2294. 48. S.E. Sinclair, D.A. Kregenow, W.J. Lamm, I.R. Starr, E.Y. Chi, & M.P. Hlastala (2002). Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. American Journal of Respiratory and Critical Care Medicine, 166(3):403-408. 49. S.Y. Wu, M.H. Li, F.C. Ko, G.C. Wu, K.L. Huang, & S.J. Chu (2013). Protective effect of hypercapnic acidosis in ischemia-reperfusion lung injury is attributable to upregulation of heme oxygenase-1. PLoS One, 8(9):e74742. 50. K. Shibata, N. Cregg, D. Engelberts, A. Takeuchi, L. Fedorko, & B.P. Kavanagh (1998). Hypercapnic acidosis may attenuate acute lung injury by inhibition of endogenous xanthine oxidase. American Journal of Respiratory and Critical Care Medicine, 158:1578-1584. 51. P. Boekstegers, & M. Weiss (1990). Tissue oxygen partial pressure distribution within the human skeletal muscle during hypercapnia. Advances in Experimental Medicine and Biology, 277:525-531. 52. W.C. Tang, M.H. Weil, R.J. Gazmuri, J. Bisera, & E.C. Rackow (1991). Reversible impairment of myocardial contractility due to hypercarbic acidosis in the isolated perfused rat heart. Critical Care Medicine, 19(2):218-224. 53. V.L. Hood, & R.L. Tannen (1998). Protection of acid-base balance by pH regulation of acid production. The New England Journal of Medicine, 339(12):819-826. 54. R.C. Vannucci, J. Towfighi, D.F. Heitjan, & R.M. Brucklacher (1995). Carbon dioxide protects the perinatal brain from hypoxic-ischemic damage: an experimental study in the immature rat. Pediatrics, 95(6):868-874. 55. M. Kitakaze, M.L. Weisfeldt, & E. Marban (1988). Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. The Journal of Clinical Investigation, 82(3):920-927. 56. J.G. Laffey, D. Engelberts, & B.P. Kavanagh (2000). Buffering hypercapnic acidosis worsens acute lung injury. American Journal of Respiratory and Critical Care Medicine, 161(1):141-146. 57. L.T. Lin, J.T. Chen, M.C. Tai, Y.H. Chen, C.L. Chen, S.I. Pao et al. (2019). Protective effects of hypercapnic acidosis on Ischemia-reperfusion-induced retinal injury. PLoS One, 14(1):e0211185. 58. S.Y. Wu, C.P. Wu, B.H. Kang, M.H. Li, S.J. Chu, & K.L. Huang (2012). Hypercapnic acidosis attenuates reperfusion injury in isolated and perfused rat lungs. Critical Care Medicine, 40(2):553-559. 59. M. Karin, & M. Delhase (2000). The IκB kinase (IKK) and NF-κB: key elements of proinflammatory signaling. Seminars in Immunology, 12(1):85-98. 60. K. Takeshita, Y. Suzuki, K. Nishio, O. Takeuchi, K. Toda, H. Kudo et al. (2003). Hypercapnic acidosis attenuates endotoxin-induced nuclear factor-κB activation. American Journal of Respiratory and Critical Care Medicine, 29(1):124-132. 61. H. Miyagi, S.M. Thomasy, P. Russell, & C.J. Murphy (2018). The role of hepatocyte growth factor in corneal wound healing. Experimental Eye Research, 166:49-55. 62. C.M. Liang, Y.J. Chen, & M.C. Tai. (2017, November). The effects of Hypercapnic Acidosis on Corneal Epithelium. In NTUH International Convention Center, The 58th annual meeting of the ophthalmological society of Taiwan, Taipei. 63. K.M. Oliver, C.R. Lenihan, U. Bruning, A. Cheong, J.G. Laffey, P. McLoughlin et al. (2012). Hypercapnia induces cleavage and nuclear localization of RelB protein, giving insight into CO2 sensing and signaling. The Journal of Biological Chemistry, 287(17):14004-14011 64. M. Kitakaze, S. Takashima, H. Funaya, T. Minamino, K. Node, Y. Shinozaki et al. (1997). Temporary acidosis during reperfusion limits myocardial infarct size in dogs. American Journal of Physiology, 272:H2071-2078. 65. N. Wang, K.L. Gates, H. Trejo, S. Favoreto, R.P. Schleimer, J.I. Sznajder et al. (2010). Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. The FASEB Journal, 24(7):2178-2190.
|