|
1.Organization, W.H., Global incidence and prevalence of selected curable sexually transmitted infection. 2012. 2.Tine, R.C., et al., A Study of Trichomonas vaginalis Infection and Correlates in Women with Vaginal Discharge Referred at Fann Teaching Hospital in Senegal. J Parasitol Res, 2019. 2019: p. 2069672. 3.Meites, E., Trichomoniasis: the "neglected" sexually transmitted disease. Infect Dis Clin North Am, 2013. 27(4): p. 755-64. 4.Javanbakht, M., et al., Prevalence and factors associated with Trichomonas vaginalis infection among high-risk women in Los Angeles. Sex Transm Dis, 2013. 40(10): p. 804-7. 5.Chang, P.C., et al., A pilot study on Trichomonas vaginalis in women with recurrent urinary tract infections. Biomed J, 2016. 39(4): p. 289-294. 6.Lehker, M.W. and J.F. Alderete, Biology of trichomonosis. Curr Opin Infect Dis, 2000. 13(1): p. 37-45. 7.Alderete, J.F., et al., The complex fibronectin--Trichomonas vaginalis interactions and Trichomonosis. Parasitol Int, 2002. 51(3): p. 285-92. 8.Arroyo, R., et al., Signalling of Trichomonas vaginalis for amoeboid transformation and adhesion synthesis follows cytoadherence. Mol Microbiol, 1993. 7(2): p. 299-309. 9.Peterson, K.M. and J.F. Alderete, Host plasma proteins on the surface of pathogenic Trichomonas vaginalis. Infect Immun, 1982. 37(2): p. 755-62. 10.Arroyo, R., J. Engbring, and J.F. Alderete, Molecular basis of host epithelial cell recognition by Trichomonas vaginalis. Mol Microbiol, 1992. 6(7): p. 853-62. 11.Okumura, C.Y., L.G. Baum, and P.J. Johnson, Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cell Microbiol, 2008. 10(10): p. 2078-90. 12.Lama, A., et al., Glyceraldehyde-3-phosphate dehydrogenase is a surface-associated, fibronectin-binding protein of Trichomonas vaginalis. Infect Immun, 2009. 77(7): p. 2703-11. 13.Kucknoor, A., V. Mundodi, and J.F. Alderete, Trichomonas vaginalis adherence mediates differential gene expression in human vaginal epithelial cells. Cell Microbiol, 2005. 7(6): p. 887-97. 14.Figueroa-Angulo, E.E., et al., The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes Infect, 2012. 14(15): p. 1411-27. 15.Suresh, A., et al., Cytolytic vaginosis: A review. Indian J Sex Transm Dis AIDS, 2009. 30(1): p. 48-50. 16.Hawes, S.E., et al., Hydrogen peroxide-producing lactobacilli and acquisition of vaginal infections. J Infect Dis, 1996. 174(5): p. 1058-63. 17.St Amant, D.C., I.E. Valentin-Bon, and A.E. Jerse, Inhibition of Neisseria gonorrhoeae by Lactobacillus species that are commonly isolated from the female genital tract. Infect Immun, 2002. 70(12): p. 7169-71. 18.Pastorek, J.G., 2nd, et al., Clinical and microbiological correlates of vaginal trichomoniasis during pregnancy. The Vaginal Infections and Prematurity Study Group. Clin Infect Dis, 1996. 23(5): p. 1075-80. 19.Schneider, H., et al., Screening for sexually transmitted diseases in rural South African women. Sex Transm Infect, 1998. 74 Suppl 1: p. S147-52. 20.Mukanyangezi, M.F., et al., Screening for human papillomavirus, cervical cytological abnormalities and associated risk factors in HIV-positive and HIV-negative women in Rwanda. HIV Med, 2018. 19(2): p. 152-166. 21.Kissinger, P., Trichomonas vaginalis: a review of epidemiologic, clinical and treatment issues. BMC Infect Dis, 2015. 15: p. 307. 22.Anorlu, R.I., et al., Prevalence of trichomonas vaginalis in patients with vaginal discharge in Lagos, Nigeria. Niger Postgrad Med J, 2001. 8(4): p. 183-6. 23.Gratrix, J., et al., Trichomonas vaginalis Prevalence and Correlates in Women and Men Attending STI Clinics in Western Canada. Sex Transm Dis, 2017. 44(10): p. 627-629. 24.Krieger, J.N., et al., Clinical manifestations of trichomoniasis in men. Ann Intern Med, 1993. 118(11): p. 844-9. 25.Jackson, D.J., et al., Urethral infection in a workplace population of East African men: evaluation of strategies for screening and management. J Infect Dis, 1997. 175(4): p. 833-8. 26.Morency, P., et al., Aetiology of urethral discharge in Bangui, Central African Republic. Sex Transm Infect, 2001. 77(2): p. 125-9. 27.Hobbs, M.M. and A.C. Sena, Modern diagnosis of Trichomonas vaginalis infection. Sex Transm Infect, 2013. 89(6): p. 434-8. 28.Lara-Torre, E. and J.S. Pinkerton, Accuracy of detection of trichomonas vaginalis organisms on a liquid-based papanicolaou smear. Am J Obstet Gynecol, 2003. 188(2): p. 354-6. 29.Lawing, L.F., S.R. Hedges, and J.R. Schwebke, Detection of trichomonosis in vaginal and urine specimens from women by culture and PCR. J Clin Microbiol, 2000. 38(10): p. 3585-8. 30.Workowski, K.A., et al., Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep, 2015. 64(RR-03): p. 1-137. 31.Schmid, G., et al., Prevalence of metronidazole-resistant Trichomonas vaginalis in a gynecology clinic. J Reprod Med, 2001. 46(6): p. 545-9. 32.Crowell, A.L., K.A. Sanders-Lewis, and W.E. Secor, In vitro metronidazole and tinidazole activities against metronidazole-resistant strains of Trichomonas vaginalis. Antimicrob Agents Chemother, 2003. 47(4): p. 1407-9. 33.Cantu, J.M. and D. Garcia-Cruz, Midline facial defect as a teratogenic effect of metronidazole. Birth Defects Orig Artic Ser, 1982. 18(3 Pt A): p. 85-8. 34.Burtin, P., et al., Safety of metronidazole in pregnancy: a meta-analysis. Am J Obstet Gynecol, 1995. 172(2 Pt 1): p. 525-9. 35.Menegola, E., et al., Craniofacial and axial skeletal defects induced by the fungicide triadimefon in the mouse. Birth Defects Res B Dev Reprod Toxicol, 2005. 74(2): p. 185-95. 36.Smilack, J.D., W.R. Wilson, and F.R. Cockerill, 3rd, Tetracyclines, chloramphenicol, erythromycin, clindamycin, and metronidazole. Mayo Clin Proc, 1991. 66(12): p. 1270-80. 37.Dingsdag, S.A. and N. Hunter, Metronidazole: an update on metabolism, structure-cytotoxicity and resistance mechanisms. J Antimicrob Chemother, 2018. 73(2): p. 265-279. 38.Leiros, H.K., et al., Structural basis of 5-nitroimidazole antibiotic resistance: the crystal structure of NimA from Deinococcus radiodurans. J Biol Chem, 2004. 279(53): p. 55840-9. 39.Ralph, E.D. and D.A. Clarke, Inactivation of metronidazole by anaerobic and aerobic bacteria. Antimicrob Agents Chemother, 1978. 14(3): p. 377-83. 40.Lacey, S.L., S.F. Moss, and G.W. Taylor, Metronidazole uptake by sensitive and resistant isolates of Helicobacter pylori. J Antimicrob Chemother, 1993. 32(3): p. 393-400. 41.Pumbwe, L., et al., BmeRABC5 is a multidrug efflux system that can confer metronidazole resistance in Bacteroides fragilis. Microb Drug Resist, 2007. 13(2): p. 96-101. 42.Land, K.M. and P.J. Johnson, Molecular basis of metronidazole resistance in pathogenic bacteria and protozoa. Drug Resist Updat, 1999. 2(5): p. 289-294. 43.Rasoloson, D., et al., Mechanisms of in vitro development of resistance to metronidazole in Trichomonas vaginalis. Microbiology, 2002. 148(Pt 8): p. 2467-77. 44.Yarlett, N., N.C. Yarlett, and D. Lloyd, Ferredoxin-dependent reduction of nitroimidazole derivatives in drug-resistant and susceptible strains of Trichomonas vaginalis. Biochem Pharmacol, 1986. 35(10): p. 1703-8. 45.Penuliar, G.M., K. Nakada-Tsukui, and T. Nozaki, Phenotypic and transcriptional profiling in Entamoeba histolytica reveal costs to fitness and adaptive responses associated with metronidazole resistance. Front Microbiol, 2015. 6: p. 354. 46.Carlton, J.M., et al., Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science, 2007. 315(5809): p. 207-12. 47.Huang, K.Y., et al., A proteome reference map of Trichomonas vaginalis. Parasitol Res, 2009. 104(4): p. 927-33. 48.Schneider, R.E., et al., The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol, 2011. 41(13-14): p. 1421-34. 49.de Miguel, N., et al., Proteome analysis of the surface of Trichomonas vaginalis reveals novel proteins and strain-dependent differential expression. Mol Cell Proteomics, 2010. 9(7): p. 1554-66. 50.Huang, K.Y., et al., Comparative transcriptomic and proteomic analyses of Trichomonas vaginalis following adherence to fibronectin. Infect Immun, 2012. 80(11): p. 3900-11. 51.Dias-Lopes, G., et al., In-Depth Quantitative Proteomic Analysis of Trophozoites and Pseudocysts of Trichomonas vaginalis. J Proteome Res, 2018. 17(11): p. 3704-3718. 52.Stein, D.J., et al., What is a mental/psychiatric disorder? From DSM-IV to DSM-V. Psychol Med, 2010. 40(11): p. 1759-65. 53.Steel, Z., et al., The global prevalence of common mental disorders: a systematic review and meta-analysis 1980-2013. Int J Epidemiol, 2014. 43(2): p. 476-93. 54.Coughlin, S.S., Anxiety and Depression: Linkages with Viral Diseases. Public Health Rev, 2012. 34(2). 55.Fekadu, A., T. Shibre, and A.J. Cleare, Toxoplasmosis as a cause for behaviour disorders--overview of evidence and mechanisms. Folia Parasitol (Praha), 2010. 57(2): p. 105-13. 56.Idro, R., et al., Cerebral malaria is associated with long-term mental health disorders: a cross sectional survey of a long-term cohort. Malar J, 2016. 15: p. 184. 57.Prasad, K.M., et al., Exposure to herpes simplex virus type 1 and cognitive impairments in individuals with schizophrenia. Schizophr Bull, 2012. 38(6): p. 1137-48. 58.Brown, A.S., Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Dev Neurobiol, 2012. 72(10): p. 1272-6. 59.Khandaker, G.M., et al., Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol Med, 2013. 43(2): p. 239-57. 60.Xiao, J., et al., Toxoplasma gondii: Biological Parameters of the Connection to Schizophrenia. Schizophr Bull, 2018. 44(5): p. 983-992. 61.Fuglewicz, A.J., P. Piotrowski, and A. Stodolak, Relationship between toxoplasmosis and schizophrenia: A review. Adv Clin Exp Med, 2017. 26(6): p. 1031-1036. 62.Sperr, M., et al., Prevalence of Comorbidities in Periodontitis Patients Compared to the General Austrian Population. J Periodontol, 2017: p. 1-13. 63.Piacentino, D., et al., The central role of psychopathology and its association with disease severity in inflammatory bowel disease and irritable bowel syndrome. Riv Psichiatr, 2019. 54(2): p. 75-83. 64.Shaio, M.F., et al., Generation of interleukin-8 from human monocytes in response to Trichomonas vaginalis stimulation. Infect Immun, 1995. 63(10): p. 3864-70. 65.Fiori, P.L., et al., Association of Trichomonas vaginalis with its symbiont Mycoplasma hominis synergistically upregulates the in vitro proinflammatory response of human monocytes. Sex Transm Infect, 2013. 89(6): p. 449-54. 66.Anderson, B.L., et al., Systemic immune response to Trichomonas vaginalis infection during pregnancy. Sex Transm Dis, 2007. 34(6): p. 392-6. 67.Wu, T.Y., A. Majeed, and K.N. Kuo, An overview of the healthcare system in Taiwan. London J Prim Care (Abingdon), 2010. 3(2): p. 115-9. 68.ICD-9-CM coding and reporting official guidelines. American Hospital Association, American Medical Record Association, Health Care Financing Administration, National Center for Health Statistics. J Am Med Rec Assoc, 1990. 61(10): p. suppl 1-17. 69.Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43): p. 15545-50. 70.Wixon, J. and D. Kell, The Kyoto encyclopedia of genes and genomes--KEGG. Yeast, 2000. 17(1): p. 48-55. 71.Ashburner, M., et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9. 72.Szklarczyk, D., et al., The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res, 2017. 45(D1): p. D362-D368. 73.Ginocchio, C.C., et al., Prevalence of Trichomonas vaginalis and coinfection with Chlamydia trachomatis and Neisseria gonorrhoeae in the United States as determined by the Aptima Trichomonas vaginalis nucleic acid amplification assay. J Clin Microbiol, 2012. 50(8): p. 2601-8. 74.Abbai, N.S., H. Wand, and G. Ramjee, Sexually Transmitted Infections in Women Participating in a Biomedical Intervention Trial in Durban: Prevalence, Coinfections, and Risk Factors. J Sex Transm Dis, 2013. 2013: p. 358402. 75.Davis, A., et al., Trichomonas vaginalis and Human Immunodeficiency Virus Coinfection Among Women Under Community Supervision: A Call for Expanded T. vaginalis Screening. Sex Transm Dis, 2016. 43(10): p. 617-22. 76.Bradic, M., et al., Genetic Indicators of Drug Resistance in the Highly Repetitive Genome of Trichomonas vaginalis. Genome Biol Evol, 2017. 9(6): p. 1658-1672. 77.Mead, J.R., et al., Use of Trichomonas vaginalis clinical isolates to evaluate correlation of gene expression and metronidazole resistance. J Parasitol, 2006. 92(1): p. 196-9. 78.Wright, J.M., et al., Hydrogenosomes of laboratory-induced metronidazole-resistant Trichomonas vaginalis lines are downsized while those from clinically metronidazole-resistant isolates are not. J Eukaryot Microbiol, 2010. 57(2): p. 171-6. 79.Roth, A.M., et al., Changing sexually transmitted infection screening protocol will result in improved case finding for trichomonas vaginalis among high-risk female populations. Sex Transm Dis, 2011. 38(5): p. 398-400. 80.Yin, H., et al., The prevalence, age-of-onset and the correlates of DSM-IV psychiatric disorders in the Tianjin Mental Health Survey (TJMHS). Psychol Med, 2018. 48(3): p. 473-487. 81.Mokdad, A.H., et al., Global burden of diseases, injuries, and risk factors for young people's health during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2016. 387(10036): p. 2383-401. 82.Caron, J., et al., Prevalence of psychological distress and mental disorders, and use of mental health services in the epidemiological catchment area of Montreal South-West. BMC Psychiatry, 2012. 12: p. 183. 83.Donders, G.G.G., et al., Treatment Attitudes for Belgian Women With Persistent Trichomonas vaginalis Infection in the VlaResT Study. Clin Infect Dis, 2018. 84.Klebanoff, M.A., et al., Failure of metronidazole to prevent preterm delivery among pregnant women with asymptomatic Trichomonas vaginalis infection. N Engl J Med, 2001. 345(7): p. 487-93. 85.Schwebke, J.R. and F.J. Barrientes, Prevalence of Trichomonas vaginalis isolates with resistance to metronidazole and tinidazole. Antimicrob Agents Chemother, 2006. 50(12): p. 4209-10. 86.Kirkcaldy, R.D., et al., Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD Surveillance Network, 2009-2010. Emerg Infect Dis, 2012. 18(6): p. 939-43. 87.Argaez-Correa, W., et al., The Role of Iron Status in the Early Progression of Metronidazole Resistance in Trichomonas vaginalis Under Microaerophilic Conditions. J Eukaryot Microbiol, 2018. 88.Emery, S.J., et al., Differential protein expression and post-translational modifications in metronidazole-resistant Giardia duodenalis. Gigascience, 2018. 7(4). 89.Al-Khodor, S., et al., Functional diversity of ankyrin repeats in microbial proteins. Trends Microbiol, 2010. 18(3): p. 132-9. 90.Scurr, L.L., et al., Ankyrin repeat domain 1, ANKRD1, a novel determinant of cisplatin sensitivity expressed in ovarian cancer. Clin Cancer Res, 2008. 14(21): p. 6924-32. 91.Bourguignon, L.Y., et al., Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem, 2008. 283(25): p. 17635-51. 92.Huang, K.Y., et al., Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochim Biophys Acta, 2014. 1840(1): p. 53-64. 93.Moser, T.L., et al., Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A, 2001. 98(12): p. 6656-61. 94.Moser, T.L., et al., Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci U S A, 1999. 96(6): p. 2811-6. 95.Burrell, H.E., et al., Human keratinocytes release ATP and utilize three mechanisms for nucleotide interconversion at the cell surface. J Biol Chem, 2005. 280(33): p. 29667-76. 96.Kim, B.W., et al., Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts. Exp Mol Med, 2004. 36(5): p. 476-85. 97.Cuezva, J.M., et al., The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res, 2002. 62(22): p. 6674-81. 98.Isidoro, A., et al., Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast, gastric, lung and oesophageal cancer. Biochem J, 2004. 378(Pt 1): p. 17-20. 99.Shin, Y.K., et al., Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance. Cancer Res, 2005. 65(8): p. 3162-70. 100.Song, K.H., et al., Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest, 2018. 128(9): p. 4098-4114. 101.Baker, N., et al., Vacuolar ATPase depletion affects mitochondrial ATPase function, kinetoplast dependency, and drug sensitivity in trypanosomes. Proc Natl Acad Sci U S A, 2015. 112(29): p. 9112-7. 102.Beltran, N.C., et al., Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes. PLoS One, 2013. 8(5): p. e65148.
|