跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 09:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:巫彥豎
研究生(外文):WU, YAN-SHU
論文名稱:以常壓低氧艙模擬海拔高度對休息、最大運動 、緩和與恢復階段相關生理之影響
論文名稱(外文):Evaluating the Effect of Altitudes on Related Physiological Responses Associated with Stages of Rest, Maximal Exercise, Mitigation, and Recovery Using a Normobaric Hypoxia Chamber
指導教授:石裕川石裕川引用關係鍾綉貞鍾綉貞引用關係
指導教授(外文):SHIH, YUH-CHUANCHUNG, HSIU-CHEN
口試委員:王茂駿陳協慶吳欣潔石裕川鍾綉貞
口試委員(外文):WANG, MAO-JIUNCHEN, HSIEH-CHINGWU, HSIN-CHIEHSHIH, YUH-CHUANCHUNG, HSIU-CHEN
口試日期:2019-05-07
學位類別:碩士
校院名稱:國防大學
系所名稱:運籌管理學系
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:101
中文關鍵詞:常壓低氧環境低氧濃度心搏率呼吸頻率血氧飽和度Bruce實驗法
外文關鍵詞:Atmospheric pressure and low oxygen environmentLow oxygen concentrationHRRFSPO2Bruce Experimental Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:69
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了確保每年國軍參加高、寒地救援訓練人員或初登高海拔的作業人員及緊急救難人員,在迅速升入高海拔面臨急性暴露低氧壓環境,仍可維持應有的績效表現,實有必要深入了解研究低氧環境下的最大耗氧有氧運動能力及生理之反應。
研究對象募集國防大學軍校生12位 (男性6位、女性6位)參與實驗,身體健康狀況良好,且平時有固定運動。受試者會在低氧艙模擬三種不同高度海拔的低氧濃度分別為0公尺 (海平面)、2,000公尺 (太平山) 及3,000公尺 (合歡山) 等3種高度的氧分壓,採用遞增性Bruce實驗法量測最大有氧能力時,同時監控心搏率、呼吸頻率、血氧飽和度及AMS評分系統表等生理指標,結果顯示,休息階段,艙內休息心搏率顯著大於艙外,但血氧飽和度明顯低;運動階段因運動負荷,心搏率與呼吸頻率最大,血氧飽和度最小;最後緩和恢復階段,血氧濃度與呼吸率最先且迅速回復正常,心搏率在回到艙外時仍持續補償生理需求。本實驗低氧艙因暴露時間較短,AMS評分系統表結果沒有高山症反應。因此,在高海拔的環境下工作或訓練後,對於人員的生理恢復狀況,可以運用心搏率來作為觀察指標。
In order to ensure that Taiwan’s Army personnel or high-altitude workers and emergency rescuers can maintain their performance in the acute exposure to low-oxygen pressure environment when they are rapidly entering high altitude to perform high altitude and cold weather personnel rescue training or related high altitude operations every year, it is necessary to have an in-depth understanding of the maximum oxygen-consuming aerobic exercise capacity and physiological response in a hypoxic environment.
This study aims to study the effect of hypoxia on the maximum oxygen consumption (VO2max) and physiological response (HR、SPO2、RF、AMS). This research recruited 12 subjects from the National Defense University (6 males and 6 females) that regularly-exercise. Subjects will simulate three different levels of oxygen in a hypoxic chamber at three different altitudes: 0 meters (sea level), 2,000 meters (Taipingshan) and 3,000 meters (Hehuanshan). Each subject will be asked to perform incremental Bruce test in a hypoxic chamber with one of three hypoxic conditions every time. The subject’s VO2 max and the physiological responses will be measured.
The results showed that during the rest period, the resting heart rate in the cabin was significantly greater than that outside the cabin, and the blood oxygen saturation concentration was significantly reduced; during the exercise phase, the heart rate and respiratory rate are the largest due to exercise load, and the blood oxygen saturation concentration is the smallest; finally, during the recovery phase, the blood oxygen concentration and respiratory rate are the first to return to normal, and the heart rate continues to compensate for physiological needs. In this experiment, the exposure time of hypoxia test was short, and the AMS score system showed no peak disease. Therefore, after working or training in a high-altitude environment, the heart rate can be used as an observation indicator for the physiological recovery of the person.
致謝 i
摘要 ii
ABSTRACT iii
目錄 v
表目錄 viii
圖目錄 ix
中英文縮寫對照表 x
第一章 緒論 1
1.1 研究背景及動機 1
1.2 研究目的 5
1.3 研究範圍 6
1.4 研究流程 6
第二章 文獻探討 8
2.1 低氧環境 8
2.2低氧環境生理反應 9
2.2.1 高地低氧環境生理反應 9
2.2.2 人工低氧環境生理反應 11
2.3 本研究應變項相關之研究 12
2.3.1 耗氧量 12
2.3.2 心搏率 16
2.3.3 呼吸頻率 19
2.3.4 血氧飽和度 19
2.3.4 AMS 評分系統表 22
2.4文獻探討小結 26
第三章 研究方法 27
3.1 研究對象 27
3.2 實驗設計 29
3.2.1 自變項 30
3.2.2 應變項 31
3.2.3 控制變項 34
3.3 實驗儀器及設備 35
3.4 實驗步驟 39
3.5 資料處理及分析 45
第四章 結果 48
4.1 各階段之生理反應 48
4.1.1 心搏率 (HR) 48
4.1.2 呼吸頻率 (RF) 51
4.1.3 血氧飽和度 (SPO2) 53
4.1.4 AMS評分系統 57
4.2 緩和階段之生理反應 57
4.2.1 耗氧量恢復量 58
4.2.2 心搏率恢復量 61
4.2.3 呼吸頻率恢復量 63
第五章 討論 65
5.1 各階段之生理反應 65
5.1.1 心搏率 (HR) 65
5.1.2 呼吸頻率 (RF) 67
5.1.3 血氧飽和度 (SPO2) 67
5.1.4 AMS評分系統表 70
5.2 緩和階段之生理反應 70
5.2.1 耗氧量恢復量 70
5.2.2 心搏率恢復量 71
5.2.3 呼吸頻率恢復量 72
第六章 結論與建議 73
6.1結論 73
6.2軍事實務運用及管理意涵 73
6.3建議與未來研究方向 73
參考文獻 74
一、 中文部分 74
二、 外文部分 75
附錄A 知情同意書 82
附錄B 運動指標得分量表 83
附錄C 實驗記錄表 84
附錄D 受試者健康狀況調查表 86
附錄E 2018年路易斯湖急性高山病評分系統 88

一、中文部分
吳慧君 (2005)。運動能力的生理評定。臺北市:師大書苑。
周文軍、金宏偉與李堅 (2007)。心率在運動訓練監控中的運用。長沙大學學報,頁114-117。
林正常 (2005)。運動生理學。臺北市:師大書苑。
林正常 (2011)。運動生理學(增編第四版)。臺北市:師大書苑。
林洒鋒 (2008)。登山者對登山風險及危機處理的認知研究。臺東大學進修部暑期體育碩士班學位論文,未出版,臺東縣。
高偉峰、高偉君、曾春典、陳秀熙、馬惠明與陳俊忠 (2006)。以玉山登山口與平地血氧飽和度差異預測急性高山病。中華民國急救加護醫學會雜誌,第17卷,第2期,頁47-54。
陳志勇與李建璁 (2006)。VDT 電腦工作站設計與評估。行政院勞工委員會勞工安全衛生研究所。
黃國聖、廖美華、劉介仲、陳毓君、秦作威與溫小娟 (2005)。間歇性低壓低氧後細胞的變化。加馬(36),61-66。
黃沛嘉 (2015)。以生理呼吸調控為基礎的呼吸系統模型之建構。中央大學電機工程學系學位論文,未出版,桃園市。
溫德生、司徒國與沈儀文 (1999)。低壓艙艙航缺氧症狀與血氧飽和度的研究。中華民國航空醫學會刊,第13卷,第1期,頁51-64。
劉家明 (2017)。內衣材質於不同行軍負重下對耗氧及舒適性之影響。國防大學管理學院運籌管理學系學位論文,未出版,臺北市。
蔡偉志 (2018)。環境溫度對模擬行軍時主/客觀生理負荷之影響。國防大學管理學院運籌管理學系學位論文,未出版,臺北市。
賴聖文 (2013)。常壓缺氧與低壓缺氧體驗流程對行為與生理的影響。國防醫學院航太及海洋醫學系學位論文,未出版,臺北市。
熊育彬、陳佳慧、張嘉澤 (2011)。常氧與低氧間歇訓練方式對於人體血氧飽和濃度、乳酸、心跳率之影響。國際體育運動與健康休閒學術研討會。
二、外文部分
Alexander, J. K., Hartley, L. H., Modelski, M., & Grover, R. F. (1967). Reduction of stroke volume during exercise in man following ascent to 3,100 m altitude. Journal of Applied Physiology, 23(6), 849-858.
Basualto-Alarcón, C., Rodas, G., Galilea, P. A., Riera, J., Pagés, T., Ricart, A., & Viscor, G. (2012). Cardiorespiratory parameters during submaximal exercise under acute exposure to normobaric and hypobaric hypoxia. Apunts. Medicina de l'Esport, 47(174), 65-72.
Beidleman, B. A., Muza, S. R., Fulco, C. S., Cymerman, A., Ditzler, D. T., Stulz, D., & Lewis, S. F. (2003). Intermittent altitude exposures improve muscular performance at 4,300 m. Journal of Applied Physiology, 95(5), 1824-1832.
Benoit, H., Germain, M., Barthelemy, J., Denis, C., Castells, J., Dormois, D., & Geyssant, A. (1992). Pre-acclimatization to high altitude using exercise with normobaric hypoxic gas mixtures. International Journal of Sports Medicine, 13(S 1), S213-S216.
Bert, P. (1878). Barometric pressure (La Pression Barométrique, 1878). Bethesda, MD: Undersea Medical Society.
Beutner, F., Ubrich, R., Zachariae, S., Engel, C., Sandri, M., Teren, A., & Gielen, S. (2014). Validation of a brief step-test protocol for estimation of peak oxygen uptake. European Journal of Preventive Cardiology, 2047487314533216.
Boussuges, A., Molenat, F., Burnet, H., Cauchy, E., Gardette, B., Sainty, J.-m., & Richalet, J.-p. (2000). Operation Everest III (COMEX'97): modifications of cardiac function secondary to altitude-induced hypoxia: an echocardiographic and Doppler study. American Journal of Respiratory and Critical Care Medicine, 161(1), 264-270.
Brooks, G., Fahey, T., & Baldwin, K. (2000). Exercise Physiology: Human Bioenergetics and Its Applications. 2000. London: Mayfield, 3.
Burtscher, M., Philadelphy, M., Gatterer, H., Burtscher, J., Faulhaber, M., Nachbauer, W., & Likar, R. (2019). Physiological Responses in Humans Acutely Exposed to High Altitude (3480 m): Minute Ventilation and Oxygenation Are Predictive for the Development of Acute Mountain Sickness. High Altitude Medicine & Biology.
Buskirk, E., Kollias, J., Akers, R., Prokop, E., & Reategui, E. P. (1967). Maximal performance at altitude and on return from altitude in conditioned runners. Journal of Applied Physiology, 23(2), 259-266.
Chatterjee, T., Bhattacharyya, D., Pramanik, A., Pal, M., Majumdar, D., & Majumdar, D. (2017). Soldiers’ load carriage performance in high mountains: a physiological study. Military Medical Research, 4:6.
Clanton, T. L., & Klawitter, P. F. (2001). Invited review: Adaptive responses of skeletal muscle to intermittent hypoxia: the known and the unknown. Journal of Applied Physiology, 90(6), 2476-2487.
Cole, C. R., Blackstone, E. H., Pashkow, F. J., Snader, C. E., & Lauer, M. S. (1999). Heart-rate recovery immediately after exercise as a predictor of mortality. New England Journal of Medicine, 341(18), 1351-1357.
Ekelund, U., Poortvliet, E., Nilsson, A., Yngve, A., Holmberg, A., & Sjöström, M. (2001). Physical activity in relation to aerobic fitness and body fat in 14-to 15-year-old boys and girls. European Journal of Applied Physiology, 85(3-4), 195-201.
Faulhaber, M., Wille, M., Gatterer, H., Heinrich, D., & Burtscher, M. (2014). Resting arterial oxygen saturation and breathing frequency as predictors for acute mountain sickness development: a prospective cohort study. Sleep and Breathing, 18(3), 669-674.
Fulco, C. S., Kambis, K., Friedlander, A., Rock, P., Muza, S., & Cymerman, A. (2005). Carbohydrate supplementation improves time-trial cycle performance during energy deficit at 4,300-m altitude. Journal of Applied Physiology, 99(3), 867-876.
Fulco, C. S., & P.B. Roc. (1998). Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med 1998; 69:793-801
Gallagher, C. A., Willems, M. E., Lewis, M. P., & Myers, S. D. (2015). The application of maximal heart rate predictive equations in hypoxic conditions. European Journal of Applied Physiology, 115(2), 277-284.
Grandjean, E., & Kroemer, K. H. (1997). Fitting the Task to the Human: A Textbook of Occupational Ergonomics: CRC press.
Grataloup, O., Busso, T., Castells, J., Denis, C., & Benoit, H. (2007). Evidence of decrease in peak heart rate in acute hypoxia: effect of exercise-induced arterial hypoxemia. International Journal of Sports Medicine, 28(03), 181-185.
Guyton, A. C. (1991). Textbook of medical physiology. 8th. WB Saunders Company, Philadelphia, 782.
Hackett, P. H., & Rennie, D. (1979). Rales, peripheral edema, retinal hemorrhage and acute mountain sickness. The American Journal of Medicine, 67(2), 214-218.
Hackett, P. H., & Roach, R. C. (2001). High-altitude illness. New England Journal of Medicine, 345(2), 107-114.
Haff, G. G., & Triplett, N. T. (2015). Essentials of Strength Training and Conditioning 4th Edition: Human kinetics.
Hammond, M., Gale, G., Kapitan, K., Ries, A., & Wagner, P. (1986). Pulmonary gas exchange in humans during normobaric hypoxic exercise. Journal of Applied Physiology, 61(5), 1749-1757.
Heil, D. P., Freedson, P. S., Ahlquist, L. E., Price, J., & Rippe, J. M. (1995). Nonexercise regression models to estimate peak oxygen consumption (Vol. 27, pp. 599-606): Williams & Wilkins 351 WEST CAMDEN ST, BALTIMORE, MD 21201-2436.
Hu, S. C., & Kao, W. F. (2002). A survey of disease patterns in high mountain recreational areas. Tzu Chi Medical Journal, 14(6), 373-380.
Jackson, A. S., Blair, S. N., Mahar, M. T., Wier, L. T., Ross, R. M., & Stuteville, J. E. (1990). Prediction of functional aerobic capacity without exercise testing. Medicine and Science in Sports and Exercise, 22(6), 863-870.
Jopke, T. (1981). Choosing an exercise testing protocol. The Physician and Sportsmedicine, 9(3), 141-145.
Kao, W., Kuo, C., Hsu, T., Chang, H., Sung, Y., Yen, D. H., Lee, C. (2002). Erratum: Acute mountain sickness in Jade mountain climbers of Taiwan (Aviation Space and Environmental Medicine (2002) 73 (359-362)). Aviation Space and Environmental Medicine, 73(6), 6-13.
Kasch, F. (1985). Effects of 18 years of endurance exercise on the physical work capacity of older men. J Cardiac Rehabil, 5, 308-312.
Kontos, H. A., Levasseur, J. E., Richardson, D., Mauck Jr, H., & Patterson Jr, J. (1967). Comparative circulatory responses to systemic hypoxia in man and in unanesthetized dog. Journal of Applied Physiology, 23(3), 381-386.
Kronenberg, R. S., & Drage, C. W. (1973). Attenuation of the ventilatory and heart rate responses to hypoxia and hypercapnia with aging in normal men. The Journal of Clinical Investigation, 52(8), 1812-1819.
Laurent Mourot. (2018). Limitation of maximal heart rate in hypoxia: mechanisms and clinical importance. Frontiers in Physiology, 9, 9-72.
Lhuissier, F. J., Brumm, M., Ramier, D., & Richalet, J.-P. (2011). Ventilatory and cardiac responses to hypoxia at submaximal exercise are independent of altitude and exercise intensity. Journal of Applied Physiology, 112(4), 566-570.
Lipsitz, L. A., Hashimoto, F., Lubowsky, L. P., Mietus, J., Moody, G. B., Appenzeller, O., & Goldberger, A. L. (1995). Heart rate and respiratory rhythm dynamics on ascent to high altitude. Heart, 74(4), 390-396.
Lorente-Aznar, T., Perez-Aguilar, G., García-Espot, A., Benabarre-Ciria, S., Mendia-Gorostidi, J. L., Dols-Alonso, D., & Blasco-Romero, J. (2016). Estimation of arterial oxygen saturation in relation to altitude. Medicina Clínica (English Edition), 147(10), 435-440.
Lundby, C., Araoz, M., & Van Hall, G. (2001). Peak heart rate decreases with increasing severity of acute hypoxia. High Altitude Medicine & Biology, 2(3), 369-376.
Maddox, T. M., Ross, C., Ho, P. M., Masoudi, F. A., Magid, D., Daugherty, S. L., & Rumsfeld, J. S. (2008). The prognostic importance of abnormal heart rate recovery and chronotropic response among exercise treadmill test patients. American Heart Journal, 156(4), 736-744.
Maggiorini, M., Müller, A., Hofstetter, D., Bärtsch, P., & Oelz, O. (1998). Assessment of acute mountain sickness by different score protocols in the Swiss Alps. Aviation, Space, and Environmental Medicine, 69(12), 1186-1192.
Mahon, A. D., & Marsh, M. L. (1993). Ventilatory Threshold and v0, Plateau at Maximal Exercise in 8-to Id-Year-Old Children. Pediatric Exercise Science, 5, 332-338.
McArdle, W. D., Katch, F. I., & Katch, V. L. (2010). Exercise Physiology: Nutrition, Energy, and Human Performance: Lippincott Williams & Wilkins.
Meehan, R. (1986). Renin, aldosterone, and vasopressin responses to hypoxia during 6 hours of mild exercise. Aviation, Space, and Environmental Medicine, 57(10 Pt 1), 960-965.
Mollard, P., Woorons, X., Letournel, M., Lamberto, C., Favret, F., Pichon, A., & Richalet, J.-P. (2007). Determinant factors of the decrease in aerobic performance in moderate acute hypoxia in women endurance athletes. Respiratory Physiology & Neurobiology, 159(2), 178-186.
Mora, S., Redberg, R. F., Cui, Y., Whiteman, M. K., Flaws, J. A., Sharrett, A. R., & Blumenthal, R. S. (2003). Ability of exercise testing to predict cardiovascular and all-cause death in asymptomatic women: a 20-year follow-up of the lipid research clinics prevalence study. Jama, 290(12), 1600-1607.
Naeije, R. (2010). Physiological adaptation of the cardiovascular system to high altitude. Progress in Cardiovascular Diseases, 52(6), 456-466.
Nanas, S., Anastasiou-Nana, M., Dimopoulos, S., Sakellariou, D., Alexopoulos, G., Kapsimalakou, S., & Roussos, C. (2006). Early heart rate recovery after exercise predicts mortality in patients with chronic heart failure. International Journal of Cardiology, 110(3), 393-400.
Napoli, A. M., Milzman, D. P., Damergis, J. A., & Machan, J. (2009). Physiologic affects of altitude on recreational climbers. The American Journal of Emergency Medicine, 27(9), 1081-1084.
Nishime, E. O., Cole, C. R., Blackstone, E. H., Pashkow, F. J., & Lauer, M. S. (2000). Heart rate recovery and treadmill exercise score as predictors of mortality in patients referred for exercise ECG. Jama, 284(11), 1392-1398.
Pollock, M. L., Bohannon, R. L., Cooper, K. H., Ayres, J. J., Ward, A., White, S. R., & Linnerud, A. (1976). A comparative analysis of four protocols for maximal treadmill stress testing. American Heart Journal, 92(1), 39-46.
Reeves, J. T., Groves, B. M., Sutton, J. R., Wagner, P. D., Cymerman, A., Malconian, M. K., & Houston, C. S. (1987). Operation Everest II: preservation of cardiac function at extreme altitude. Journal of Applied Physiology, 63(2), 531-539.
Richalet, J.-P., Bittel, J., Herry, J.-P., Savourey, G., Le Trong, J.-L., Auvert, J.-F., & Janin, C. (1992). Use of a hypobaric chamber for pre-acclimatization before climbing Mount Everest. International Journal of Sports Medicine, 13(S1), S216-S220.
Richalet, J.-P., Gimenez-Roqueplo, A.-P., Peyrard, S., Vénisse, A., Marelle, L., Burnichon, N., & Elghozi, J.-L. (2009). A role for succinate dehydrogenase genes in low chemoresponsiveness to hypoxia? Clinical Autonomic Research, 19(6), 335-342.
Roach, R. C., Hackett, P. H., Oelz, O., Bärtsch, P., Luks, A. M., MacInnis, M. J., & Committee, L. L. A. S. C. (2018). The 2018 Lake Louise Acute Mountain Sickness Score. High Altitude Medicine & Biology, 19(1), 4-6.
Roach, R. C., Loeppky, J. A., & Icenogle, M. V. (1996). Acute mountain sickness: increased severity during simulated altitude compared with normobaric hypoxia. Journal of Applied Physiology, 81(5), 1908-1910.
Rowell, L. B., Johnson, D. G., Chase, P. B., Comess, K. A., & Seals, D. R. (1989). Hypoxemia raises muscle sympathetic activity but not norepinephrine in resting humans. Journal of Applied Physiology, 66(4), 1736-1743.
Ruiz, J. R., Ramirez-Lechuga, J., Ortega, F. B., Castro-Pinero, J., Benitez, J. M., Arauzo-Azofra, A., & Gutierrez, A. (2008). Artificial neural network-based equation for estimating VO2max from the 20 m shuttle run test in adolescents. Artificial Intelligence in Medicine, 44(3), 233-245.
Rupp, T., Jubeau, M., Millet, G. Y., Perrey, S., Esteve, F., Wuyam, B., & Verges, S. (2012). The effect of hypoxemia and exercise on acute mountain sickness symptoms. Journal of Applied Physiology, 114(2), 180-185.
Sanborn, M. R., Edsell, M. E., Yow, H., Martin, D. S., Imray, C., & Grocott, M. (2012). Changes in Peripheral and Cerebral Oxygenation With Altitude and Acclimatization. Wilderness & Environmental Medicine, 23(2), 193-194.
Savin, W. M., Davidson, D. M., & Haskell, W. L. (1982). Autonomic contribution to heart rate recovery from exercise in humans. Journal of Applied Physiology, 53(6), 1572-1575.
Savourey, G., Guinet, A., Besnard, Y., Garcia, N., Hanniquet, A.-M., & Bittel, J. (1995). Evaluation of the Lake Louise acute mountain sickness scoring system in a hypobaric chamber. Aviation, Space, and Environmental Medicine. 66(10), 963-967.
Shetler, K., Marcus, R., Froelicher, V. F., Vora, S., Kalisetti, D., Prakash, M., & Myers, J. (2001). Heart rate recovery: validation and methodologic issues. Journal of the American College of Cardiology, 38(7), 1980-1987.
Stuart , R. J., & Ellestad, M. H. (1980). National survey of exercise stress testing facilities. Chest, 77(1), 94-97.
Swenson, E. R., Duncan, T. B., Goldberg, S. V., Ramirez, G., Ahmad, S., & Schoene, R. B. (1995). Diuretic effect of acute hypoxia in humans: relationship to hypoxic ventilatory responsiveness and renal hormones. Journal of Applied Physiology, 78(2), 377-383.
Trudeau, F., Laurencelle, L., & Lajoie, C. (2015). Energy expenditure at work in physical education teachers. Applied Ergonomics, 46, 218-223.
Vogel, J. A., & Harris, C. W. (1967). Cardiopulmonary responses of resting man during early exposure to high altitude. Journal of Applied Physiology, 22(6), 1124-1128.
Wang, J.-C., Tsai, S.-H., Chen, Y.-L., Hsu, C.-W., Lai, K.-C., Liao, W.-I., & Chen, Y.-H. (2014). The physiological effects and quality of chest compressions during CPR at sea level and high altitude. The American Journal of Emergency Medicine, 32(10), 1183-1188.
West, J., Lahiri, S., Gill, M., Milledge, J., Pugh, L., & Ward, M. (1962). Arterial oxygen saturation during exercise at high altitude. Journal of Applied Physiology, 17(4), 617-621.
Wilber, R. L. (2001). Current trends in altitude training. Sports Medicine, 31(4), 249-265.
電子全文 電子全文(網際網路公開日期:20240501)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top