跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/25 08:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張瑋
研究生(外文):CHANG, WEI
論文名稱:基於多目標規劃之都市防災避難收容場所區位選址研究
論文名稱(外文):Location Selection of Urban Disaster Prevention Shelter Facilities Based on Multi-objective Programming
指導教授:嚴國基嚴國基引用關係
指導教授(外文):YEN, KUO-CHI
口試委員:褚志鵬胡守任王中允嚴國基施武樵
口試委員(外文):CHU, CHIH-PENGHU, SHOU-RENWANG, CHUNG-YUNGYEN, KUO-CHISHIH, WU-CHIAO
口試日期:2019-05-07
學位類別:碩士
校院名稱:國防大學
系所名稱:運籌管理學系
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:146
中文關鍵詞:區位選擇問題多目標規劃時間滿意度函數道路效用多目標基因演算法
外文關鍵詞:Location problemMulti-objective programmingTime-satisfaction functionRoad utilityMulti-objective genetic algorithm.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:93
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:1
都市是人口密集且產經活動發展聚集之地區,倘若發生重大災害,所導致的損失將十分嚴重。因此,兼具避難與收容場所的選址問題將影響災害發生後居民疏散效率以及救災工作的推行,故而都市防災以及運輸規劃應將避難收容場所的選址問題納入整體政策推行的首要工作。本研究以都市居民角度討論災後避難時間的滿意度及災後道路經阻斷後可發揮的效用狀況,同時以政府的角度考量開設避難收容場所的成本問題,建立多目標都市避難收容場所基礎選址模型,使得每個收容設施避難者人數符合容量限制。在求解上先以基因演算法求解單一目標問題,接續以多目標基因演算法設計出契合多目標模型特性的求解方式,進而針對多目標隨機權重基因演算法的求解易受權重影響的問題,提出一種穩健式隨機權重基因演算法,並以數值分析說明模型的有效性和可行性,最後將穩健式隨機權重基因演算法與固定權重基因演算法進行收斂性分析比較,可證明本研究所提出的演算法具有較佳的表現,期能為都市避難收容選址問題提供科學依據與輔助決策。
Cities are densely populated areas where the development of economic activities is concentrated, and if a major disaster occurs, the human or economic loss can be very serious. Therefore, the location selection of prevention shelter facilities will affect the evacuation efficiency and the implementation of disaster relief. As a result, the disaster prevention and transportation planning should be included in the overall policy implementation. This study takes urban residents point of views to discuss not only the satisfaction of evacuation time after disaster but also considers the effect of road risk after disaster and as well considers the government's point of view of setting up prevention shelter facilities costs. This research objective is to establish a multi-objective urban prevention shelter facilities base location model, so that the number of evacuees do not overflow the prevention shelter facilities capacity limit. In this paper, the single objective problem is solved by gene algorithm, and then the multi-objective gene algorithm is used to design the solution method that fits the multi-objective model. Furthermore, aiming at the problem that the solution result of random weight gene algorithm is susceptible to weight, a robustness random weight gene algorithm is proposed, and explain the validity and feasibility of the model by numerical analysis. Finally, the robustness random weight gene algorithm and the fixed weight gene algorithm are compared and analyzed. It can prove that the proposed algorithm has better performance and can provide useful information for further urban construction and planning policy making.
目錄
致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究方法 5
1.4 研究範圍與假設 6
1.5 研究流程 7
第二章 文獻回顧 9
2.1 都市災害避難問題 9
2.1.1 都市災害定義與類型 9
2.1.2 避難據點之定義與功能 10
2.1.3 小結 11
2.2 避難區位選址問題 12
2.2.1 設施區位理論 12
2.2.2 設施區位選址應用問題 14
2.2.3 國內避難設施選址相關研究 14
2.2.4 國外避難設施選址相關研究 15
2.2.5 小結 16
2.3 區位選址因素考量 17
2.3.1 時間滿意度問題 17
2.3.2 道路風險問題 19
2.3.3 避難收容場所開設成本問題 19
2.3.4 避難設施容量限制問題 20
2.3.5 小結 21
2.4 多目標規劃模型問題 21
2.4.1 組合最佳化問題 21
2.4.2 多目標規劃原理 22
2.4.3 多目標規劃基本模式 24
2.4.4 多目標規劃於避難選址問題之應用 26
2.4.5 小結 27
2.5 演算法求解 27
2.5.1 演化式演算法 27
2.5.2 基因演算法 29
2.5.3 多目標基因演算法 33
2.5.4 多目標基因演算法於選址問題之應用 36
2.5.5 小結 36
2.6 綜合評析 37
第三章 單目標都市避難收容場所選址模型 39
3.1 問題分析 39
3.2 模型建立 40
3.2.1 符號說明 41
3.2.2 避難者避難時間滿意度最大化之避難收容場所選址模型 42
3.2.3 災時道路可通行效用最大化之避難收容場所選址模型 48
3.2.4 避難收容場所開設成本最小化之避難收容場所選址模型 51
3.3 求解演算法 52
3.4 單目標模型簡例測試 58
3.4.1 測試路網基本資料 58
3.4.2 測試結果與分析 60
3.4.2.1 避難者避難時間滿意度最大化數值測試 60
3.4.2.2 災時道路可通行效用最大化數值測試 63
3.4.2.3 避難收容場所開設成本最小化數值測試 67
3.5 小結 68
第四章 多目標都市避難收容場所選址模型 69
4.1 問題分析 69
4.2 模型建立 70
4.3 求解演算法 72
4.3.1 隨機權重基因演算法 72
4.3.2 穩健式隨機權重基因演算法 72
4.3.3 穩健式隨機權重基因演算法步驟 76
4.4 多目標解集合的評估方式 81
4.5 多目標模型簡例測試 84
4.5.1 測試路網基本資料 84
4.5.2 測試結果與分析 86
4.6 小結 90
第五章 數值範例分析 91
5.1 測試路網基本資料 91
5.2 測試結果與收斂性分析 93
5.2.1 測試結果分析 93
5.2.2 收斂性分析 98
5.3 本研究與固定權重法比較 100
5.4 決策偏好分析 104
5.5 小結 106
第六章 結論與建議 107
6.1 結論 107
6.2 研究貢獻 109
6.3 建議 110
參考文獻 113
附錄A 中正區測試路網-各疏散節點資訊 121
附錄B 菁英柏拉圖最佳解集合資訊(全) 122
附錄C 疏散點至避難收容點人數與滿意度數值(全) 135
附錄D 疏散點至避難收容點人數與路段效用數值(全) 139
附錄E 避難者人數與避難收容點容量限制狀態表(全) 143



一、中文部份
1. 內政部 (2018)。風災災害防救業務計畫。
2. 王貴民、韓慧林、張佑瑋、曾秉祥、王韋程、葉德芳 (2013)。天然災害情境下救援最快路徑
之最適化分析。危機管理學刊,10(1),89-98。
3. 皮慧娟、魏慶東 (2011)。物流配送中心選址問題研究。江西師範大學學報:自然科學版,
35(5),507-511。
4. 玄光男、程潤偉 (2004)。遺傳算法與工程最優化。北京:清華大學出版社。
5. 行政院經建會住都處 (1989)。都市災害型態及其應變措施之研究—中日兩國防災法規—組織體
系及應變措施。行政院經濟建設委員會都市及住宅發展處研究報告。
6. 吳健宏、翁文國 (2011)。應急避難場所的選址決策支持系統。清華大學學報(自然科學版),
51(5),632-636。
7. 李久剛、唐新明、劉正軍、汪滙兵 (2011)。基於行程距離最優及容量受限的避難所分配算法
研究。測繪學報,40(4),489-494。
8. 李威儀、何明錦 (2000)。都市計畫防災作業手冊。內政部建築研究所。
9. 肖俊華、侯雲先 (2015)。帶容量限制約束的應急設施雙目標多級覆蓋選址模型及算法。計算
機應用研究,32(12),3618-3621。
10.周亞飛、劉茂、王麗 (2010)。基於多目標規劃的城市避難場所選址研究。安全與環境學報,
10(3),205-209。
11.周根貴、沈雁飛 (2008)。基於時間滿意度的物流配送中心選址問題研究。浙江工業大學學
報,36(4),355-358。
12.周愉峰、馬祖軍、王恪銘 (2015)。有容量限制的可靠性固定費用選址問題。運籌與管理,
24(3),325-345。
13.周鵬程 (2002)。遺傳演算法原理與應用。臺北:全華科技圖書股份有限公司。
14.林建元、廖經芳、廖文祥 (1990)。都市救災決策系統-設施區位模式之建立。臺北市:行政院
國家科學委員會防災科技研究報告。
15.林楨家、謝瓊慧 (2003)。以覆蓋模式分析震災臨時避難場所之配置規劃。都市與計劃,
30(4),325-345。
16.林豐澤 (2005)。演化式計算下篇:基因演算法以及三種應用實例。智慧科技與應用統計學
報,3(1),29-56。
17.胡覺亮、吳麗華、韓曙光、季曉芬 (2010)。基於時間滿意度的服裝配送模型與算法研究。紡
織學報,31(2),138-142。
18.范正安 (2014)。水災避難收容所評估準則研究 (未出版碩士論文)。國立交通大學,新竹市。
19.施益軍、王培茗、刀認 (2016)。山地小城市應急避難場所布局優化研究–以雲南劍穿為例。現
代城市研究,31(5),92-99。
20.馬丹祥、初建宇、王政、陳靈利 (2015)。基於多目標規劃的防災避難場所選址模型研究。自
然災害學報,24(2),1-7。
21.張文侯 (1977)。台北市防災避難場所之區位決策分析 (未出版碩士論文)。國立台灣大學,臺
北市。
22.許志義 (1994)。多目標決策。台北市:五南圖書出版公司。
23.許添本、呂獎慧 (2002)。地震救災最小風險路徑選擇模式之建立與應用。台大工程學刊,
85,33-48。
24.曾建元 (2010)。大型量販店整合性庫存控制與銷售物流網路之多目標區位定址問題 (未出版
碩士論文)。淡江大學,新北市。
25.曾詩婷 (2014)。應用多目標規劃於防災公園選址之研究-以臺南市東區為例(未出版碩士論
文)。長榮大學,臺南市。
26.臺北市 (2018)。臺北市地區災害防救計畫。
27.劉玉、王海起、侯金亮、陳冉、桂麗 (2018)。基於多目標遺傳算法的空間優化選址方法研
究。地理空間信息,16(3),26-29。
28.劉書綺 (2010)。都市地區地震災害避難據點與避難路徑擇定之研究 (未出版碩士論文)。國立
交通大學,新竹市。
29.劉萌偉、黎夏 (2010)。基於Pareto多目標遺傳算法的公共服務設施優化選址研究–以深圳市
醫院選址為例。熱帶地理,30(6),650-655。
30.鄭金華 (2007)。多目標進化算法及其應用。北京:科學出版社。
31.陳志芬、李強、陳晉(2010)。城市應急避難場所層次布局研究 (Π)–三級層次選址模型。自然
災害學報,19(5),13-19。
32.戴政安、李泳龍,、何明錦、林慶元 (2011)。都市防災空間系統避難據點區位評估-SITATION
及 TELES 與 Google Earth 之整合應用。建築與規劃學報,12(1),23-46。
33.鍾佳欣 (2004)。都市舊市區緊急性避難據點之區位配置研究 (未出版碩士論文)。國立成功大
學,臺南市。

二、外文部份
1. Alçada‐Almeida, L., Tralhao, L., Santos, L., & Coutinho‐Rodrigues, J.
(2009). A multiobjective approach to locate emergency shelters and identify
evacuation routes in urban areas. Geographical analysis, 41(1), 9-29.
2. Bar-Gera. H (2007), Website: Transportation Network Test Problems
website:http://github.com/bstabler/TransportationNetworks/tree/master/SiouxFall
3. Boonmee, C., Arimura, M., & Asada, T. (2017). Facility location
optimization model for emergency humanitarian logistics. International
Journal of Disaster Risk Reduction, 24, 485-498.
4. Chanta, S., & Sangsawang, O. (2012). Shelter-site selection during flood
disaster. Lect. Notes Manag. Sci, 4, 282-288.
5. Chao-rong, L., Le-xi, L., Jian, S., & Huan-qin, Z. (2012, May). Emergency
transportation model of logistic material based on time-satisfaction. In
2012 IEEE International Conference on CASE, 1, 785-788.
6. Church, R., & Velle, C. R. (1974). The maximal covering location problem.P
apers in regional science, 32(1), 101-118.
7. Coello, C. A. C., & Lamont, G. B. (2004). Applications of multi-objective
evolutionary algorithms. World Scientific.
8. Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007).
Evolutionary algorithms for solving multi-objective problems. New York:
Springer.
9. Cooper, L. (1963). Location-allocation problems. Operations research,
11(3), 331-343.
10.Coutinho-Rodrigues, J., Tralhão, L., & Alçada-Almeida, L. (2012). Solving a
location-routing problem with a multiobjective approach: the design of
urban evacuation plans. Journal of Transport Geography, 22, 206-218.
11.Current, J., Min, H., & Schilling, D. (1990). Multiobjective analysis of
facility location decisions. European Journal of Operational Research,
49(3), 295-307.
12.Current, J. R., & Storbeck, J. E. (1988). Capacitated covering models.
Environment and planning B: planning and Design, 15(2), 153-163.
13.Daskin, M. S. (2011). Network and discrete location: models, algorithms,
and applications. John Wiley & Sons.
14.Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000 September). A fast
elitist non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II. In International conference on parallel problem
solving from nature (pp.849-858). Springer, Berlin, Heidelberg.
15.Deb, K. (2005). Multi-objective optimization using evolutionary algorithms.
Wiley.
16.Duckstein, L., & Opricovic, S. (1980). Multiobjective optimization in river
basin development. Water resources research, 16(1), 14-20.
17.Farahani, R. Z., SteadieSeifi, M., & Asgari, N. (2010). Multiple criteria
facility location problems: A survey. Applied Mathematical Modelling,
34(7), 1689-1709.
18.Farahani, R. Z., Asgari, N., Heidari, N., Hosseininia, M., & Goh, M.
(2012). Covering problems in facility location: A review. Computers &
Industrial Engineering, 62(1), 368-407.
19.Fisher, M. L. (1981). The Lagrangian relaxation method for solving integer
programming problems. Management science, 27(1), 1-18.
20.Gen, M., Cheng, R., & Lin, L. (2008). Network models and optimization:
Multiobjective genetic algorithm approach. Springer Science & Business
Media.
21.Goldberg, D. E., & Richardson, J. (1987, July). Genetic algorithms with
sharing for multimodal function optimization. In Genetic algorithms and
their applications: Proceedings of the Second International Conference on
Genetic Algorithms (pp.41-49). Hillsdale, NJ: Lawrence Erlbaum.
22.Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine
learning. Machine learning, 3(2), 95-99.
23.Hajela, P., & Lin, C. Y. (1992). Genetic search strategies in
multicriterion optimal design. Structural optimization, 4(2), 99-107.
24.Hakimi, S. L. (1964). Optimum locations of switching centers and the
absolute centers and medians of a graph. Operations research, 12(3), 450-
459.
25.Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann
Arbor, Michigan : The University of Michigan Press.
26.Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994, June). A niched Pareto
genetic algorithm for multiobjective optimization. In Proceedings of the
first IEEE conference on evolutionary computation, IEEE world congress on
computational intelligence, 1, 82-87.
27.Israeli, Y., & Ceder, A. (1995). Transit route design using scheduling and
multiobjective programming techniques. In Computer-aided transit scheduling
(pp.56-75). Springer, Berlin, Heidelberg.
28.Jaramillo, J. H., Bhadury, J., & Batta, R. (2002). On the use of genetic
algorithms to solve location problems. Computers & Operations Research,
29(6), 761-779.
29.Klose, A., & Drexl, A. (2005). Facility location models for distribution
system design. European journal of operational research, 162(1), 4-29.
30.Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization
using genetic algorithms: A tutorial. Reliability Engineering & System
Safety, 91(9), 992-1007.
31.Kongsomsaksakul, S., Yang, C., & Chen, A. (2005). Shelter location-
allocation model for flood evacuation planning. Journal of the Eastern Asia
Society for Transportation Studies, 6, 4237-4252.
32.Koopmans, T. C. (1951). An analysis of production as an efficient
combination of activities. Activity analysis of production and allocation.
33.Kuhn, H. W., & Tucker, A. W. (1951). Nonlinear programming. In Proceedings
of the 2nd Berkeley Symposium on Mathematical Statistics and Probability,
481-492.
34.Li, X., Zhao, Z., Zhu, X., & Wyatt, T. (2011). Covering models and
optimization techniques for emergency response facility location and
planning: a review. Mathematical Methods of Operations Research, 74(3),
281-310.
35.Ma, Yun-feng, & Wu, Han-fen, (2006, October). Definitions and curve fitting
of time satisfaction functions in facility location problems. In 2006
International Conference on Management Science and Engineering (pp. 429-
433). IEEE.
36.Morgenstern, O., & Von Neumann, J. (1953). Theory of games and economic
behavior. Princeton university press.
37.Murata, T., & Ishibuchi, H. (1995, November). MOGA: multi-objective genetic
algorithms. In IEEE international conference on evolutionary computation,
1, 289-294.
38.Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Multi-objective genetic
algorithm and its applications to flowshop scheduling. Computers &
Industrial Engineering, 30(4), 957-968.
39.Narasimhan, S., Pirkul, H., & Schilling, D. A. (1992). Capacitated
emergency facility siting with multiple levels of backup. Annals of
Operations Research, 40(1), 323-337.
40.Oei, C. K., Goldberg, D. E., & Chang, S. J. (1991). Tournament selection,
niching, and the preservation of diversity. Illigal report, 91011.
41.Owen, S. H., & Daskin, M. S. (1998). Strategic facility location: A review.
European journal of operational research, 111(3), 423-447.
42.Pan, A. (2010, December). The applications of maximal covering model in
typhoon emergency shelter location problem. In IEEE international
conference on industrial engineering and engineering management. (pp. 1727-
1731). IEEE.
43.Pérez-Galarce, F., Canales, L. J., Vergara, C., & Candia-Véjar, A. (2017).
An optimization model for the location of disaster refuges. Socio-Economic
Planning Sciences, 59, 56-66.
44.Pirkul, H., & Schilling, D. A. (1988). The siting of emergency service
facilities with workload capacities and backup service. Management Science,
34(7), 896-908.
45.Pirkul, H., & Schilling, D. (1989). The capacitated maximal covering
location problem with backup service. Annals of Operations Research, 18(1),
141-154.
46.Pirkul, H., & Schilling, D. A. (1991). The maximal covering location
problem with capacities on total workload. Management Science, 37(2), 233-
248.
47.Rudolph, G. (1998, May). On a multi-objective evolutionary algorithm and
its convergence to the pareto set. In IEEE international conference on
evolutionary computation proceedings. (pp. 511-516). IEEE.
48.Schaffer, J. D. (1985). Multiple objective optimization with vector
evaluated genetic algorithms. In Proceedings of the First International
Conference on Genetic Algorithms and Their Applications, Lawrence Erlbaum
Associates. Inc., Publishers.
49.Schott, J. R. (1995). Fault Tolerant Design Using Single and Multicriteria
Genetic Algorithm Optimization (Unpublished master’s thesis). Department of
Aeronautics and Astronautics, Massachusetts Institute of Technology.
50.Shen, Y., Wang, Q., Yan, W., & Wang, J. (2015). A transportation-location
problem model for pedestrian evacuation in chemical industrial parks
disasters. Journal of Loss Prevention in the Process Industries, 33, 29-38.
51.Sherali, H. D., Carter, T. B., & Hobeika, A. G. (1991). A location-
allocation model and algorithm for evacuation planning under
hurricane/flood conditions. Transportation Research Part B: Methodological,
25(6), 439-452.
52.Shukla, P. K., & Deb, K. (2007). On finding multiple Pareto-optimal
solutions using classical and evolutionary generating methods. European
Journal of Operational Research, 181(3), 1630-1652.
53.Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of
emergency service facilities. Operations research, 19(6), 1363-1373.
54.Van Veldhuizen, D. A., & Lamont, G. B. (1998, July). Evolutionary
computation and convergence to a pareto front. In Late breaking papers at
the genetic programming 1998 conference (pp. 221-228).
55.Wu, L. Y., Zhang, X. S., & Zhang, J. L. (2006). Capacitated facility
location problem with general setup cost. Computers & Operations Research,
33(5), 1226-1241.
56.Yu, P. L. (1973). A class of solutions for group decision problems.
Management Science, 19(8), 936-946.
57.Zeleny, M. (1973). Compromise programming, multiple criteria decision-
making. Multiple criteria decision making. University of South Carolina
Press, Columbia, 263-301.
58.Zelany, M. (1974). A concept of compromise solutions and the method of the
displaced ideal. Computers & Operations Research, 1(3-4), 479-496.
59.Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach. IEEE transactions
on Evolutionary Computation, 3(4), 257-271.
60.Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective
evolutionary algorithms: Empirical results. Evolutionary computation, 8(2),
173-195.
61.Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the
strength Pareto evolutionary algorithm. TIK-report, 103.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top