跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇則維
研究生(外文):SU, TZE-WEI
論文名稱:焙燒技術應用於生質物之物化性質研究
論文名稱(外文):The Study of Physicochemical Characteristics of Biomass UnderTorrefaction Process
指導教授:吳友平
指導教授(外文):WU, YO-PING Greg
口試委員:邱求三游非庸
口試委員(外文):CHIOU, CHYOU-SANYU, FEI-YUNG
口試日期:2019-07-05
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:化學工程與材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:82
中文關鍵詞:稻秸焙燒轉換技術物化性質
外文關鍵詞:Rice StrawTorrefactionPhysicochemical Characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
臺灣每年生產大量農業廢棄物,其中稻秸為富含木質纖維素之生質物,因此本研究使用焙燒技術應用於農業廢棄物,透過不同反應條件,包含溫度、壓力及反應時間的改變進行物化性質研究。物化性質測試項目包括近似分析、元素分析、焙燒質量損失、熱重分析、木質纖維素含量、傅立葉轉換紅外線光譜分析及表面結構等實驗測試。
研究結果中顯示溫度的上升造成最大的物化性質改變,經過最高溫度325oC-20Kg/cm2-60min焙燒條件反應過後,在近似分析中焙燒產物含水率下降5.8459%,揮發份下降33.2701%,灰份上升16.4851%,固定碳上升22.6308%,熱值提升1853.5643cal/g。元素分析中碳元素含量提升11.332%,氧元素含量下降28.173%,氫元素含量下降1.653%,而重量損失率達到53.2307%。熱重分析中焙燒產物熱穩定性增加,熱降解峰值降低且Differential Thermogravimetric Analysis (DTG)曲線呈現較平穩狀態。木質纖維素含量測定中,半纖維素及纖維素分別下降43.7533%及26.3270%,木質素則上升53.3837%。紅外線光譜分析中,確認稻秸具有C-H、O-H、C-O及C=O等官能基。表面結構分析得到焙燒產物表面的半纖維素及纖維素進行熱降解造成表面結構改變。透過實驗結果得知,焙燒技術應用於稻秸確實能夠對其物化性質造成顯著的改變。

In Taiwan, large quantity of agricultural waste was produced every year. These agricultural waste which were most as biomass, for example, rice straw, was rich with lignocellulose. This study investigated the physicochemical characteristics of agricultural waste by different reaction condition including change in temperature, pressure and reaction time under torrefaction process. The test items of physicochemical characteristics including approximate analysis, elemental analysis, torrefaction weight loss, thermogravimetric analysis, lignocellulose content measuring, Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscope/Energy-dispersive X-ray spectroscopy (SEM/EDX).
As the results showed from the study, rise in temperature caused the most change of physicochemical characteristics compared with raw rice straw. Under the maximum temperature condition of torrefaction, 325oC-20Kg/cm2-60min, the approximate analysis of torrefaction product showed that the moisture content and volatile content reduced by 5.8459% and 33.2701%. Ash content, carbon fixation content and heat value rose in 16.4851%, 22.6308% and 1853.5643cal/g, respectively. In elemental analysis of torrefaction product showed that the C elemental contant rose in 11.332%, O and H elemental contant reduced by 28.173% and 1.653%, respectively. The torrefaction weight loss rate reached 53.2307%. In lignocellulose content measuring of torrefaction product showed that the hemicellulose and cellulose contant reduced by 43.7533% and 26.3270%, the lignin content roce in 53.3837%, respectively. The results from FTIR showed that there are some functional group in raw rice straw such as C-H, O-H, C-O and C=O. The surface structure, showed from SEM/EDX, was changed because hemicellulose and cellulose were pyrolysis. As the results showed from this study, physicochemical characteristics of rice straw was changed significantly under torrefaction process.

摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1研究動機 1
1.2研究目標 2
第二章 文獻回顧 3
2.1能源與發展 3
2.1.1傳統能源 7
2.1.2再生能源 10
2.1.3生質能源 12
2.2生質物原料 15
2.2.1第一代生質物原料 15
2.2.2第二代生質物原料 15
2.2.3第三代生質物原料 16
2.2.4第四代生質物原料 16
2.3木質纖維素 17
2.3.1半纖維素 19
2.3.2纖維素 20
2.3.3木質素 21
2.4生質物轉換技術 22
2.4.1熱化學轉換技術 23
2.4.1.1直接燃燒 23
2.4.1.2生質物液化技術 24
2.4.1.3生質物氣化技術 25
2.4.1.4生質物熱解技術 26
2.4.1.5焙燒轉換技術 27
2.5稻秸 28
2.5.1稻秸傳統處理方式 28
2.5.2稻秸物化性質 28
2.5.3稻秸未來處理方式 29
第三章 實驗材料與方法 30
3.1實驗儀器與器材 30
3.2實驗流程 31
3.3實驗材料與方法 32
3.3.1原料製備 32
3.3.2焙燒生質物製備 32
3.4物理化學性質分析 33
3.4.1焙燒質量損失率 33
3.4.2近似分析 33
3.4.2.1含水率 33
3.4.2.2灰份 33
3.4.2.3揮發份 34
3.4.2.4固定碳 34
3.4.2.5熱值 34
3.4.3木質纖維素含量測定 35
3.4.3.1酸洗纖維素測定 35
3.4.3.2酸洗木質素測定 35
3.4.3.3灰份測定 35
3.4.3.4木質纖維素含量計算 36
3.4.4熱重分析 36
3.4.5紅外線光譜分析 36
3.4.6表面結構及表面元素分析 36
第四章 結果與討論 37
4.1焙燒生質物製備 37
4.2物理化學性質分析 38
4.2.1焙燒質量損失率 38
4.2.2元素分析 42
4.2.3近似分析 43
4.2.4木質纖維素含量測定 47
4.2.5熱重分析 53
4.2.6傅立葉轉換紅外線光譜分析 64
4.2.7表面元素分析 69
4.2.8表面結構分析 72
第五章 結論 74
參考文獻 75

[ 1 ] 中華民國內政部戶政司全球資訊網,歷年全國人口統計資料,查閱日期:2019.02。
[ 2 ] 中華民國經濟部能源局,能源統計資料查詢系統,查閱日期:2019.01。
[ 3 ] 中華民國經濟部能源局,106年度-能源局年報,2018。
[ 4 ] 古森本,生質能源作物之開發與潛力,農業生技產業季刊,第13期,p.46-p.53,2008,doi:10.29657/ABIQ.200804.0006。
[ 5 ] 中華民國行政院農業委員會,農業生產統計資料,查閱日期:2019.01。
[ 6 ] 王川威,侯仁義,我國可燃燒再生能源及廢棄物統計方,中華民國能源經濟學會,99年度論文。
[ 7 ] 袁振宏,吳創之,馬隆龍,生物質能利用原理與技術,化學工業出版社,2004。
[ 8 ] 華健,吳怡萱,再生能源概論,五南圖書出版股份有限公司,2008。
[ 9 ] Matthew T.Huber, Energizing historical materialism: Fossil fuels, space and the capitalist mode of production, Geoforum, Volume 40, Issue 1, p.105-p.115,2009.
[ 10 ] E. Galán, R. Padró, I. Marco, E. Tello, G. Cunfer, G.I. Guzmán, M. González de Molina, F. Krausmann, S. Gingrich, V. Sacristán, D. Moreno-Delgado, Widening the analysis of Energy Return on Investment (EROI) in agro-ecosystems: Socio-ecological transitions to industrialized farm systems (the Vallès County, Catalonia, c.1860 and 1999), Ecological Modelling, Volume 336, Pages 13-25, 2016.
[ 11 ] MarinnFischer-Kowalski, Elena Rovenskaya, Fridolin Krausmann, Irene Pallua, John R. Mc Neill, Energy transitions and social revolutions, Technological Forecasting and Social Change, Volume 138, p.69-p.77, 2019.
[ 12 ] Caineng Zou, Qun Zhao, Guosheng Zhang, Bo Xiong, Energy revolution: From a fossil energy era to a new energy era, Natural Gas Industry B, Volume 3, Issue 1, p.1-p.11, 2016
[ 13 ] Caineng ZOU, Guangming ZHAI, Guangya ZHANG, Hongjun WANG, Guosheng ZHANG, Jianzhong LI, Zhaoming WANG, Zhixin WEN, Feng MA, Yingbo LIANG, Zhi YANG, Xin LI, Kun LIANG, Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources, Petroleum Exploration and Development, Volume 42, Issue 1, p.14-p.28, 2015.
[ 14 ] Hannah Ritchie, Max Roser, Fossil Fuels, Our World in Data, 查閱日期:2019.02。
[ 15 ] Kenneth Hansen, Brian Vad Mathiesen, Iva RidjanSkov, Renewable and Sustainable Energy Reviews, Volume 102, p.1-p.13, 2019.
[ 16 ] Hannah Ritchie, Max Roser, CO₂ and other Greenhouse Gas Emissions, Our World in Data, 查閱日期:2019.02。
[ 17 ] Mohd Atiqueuzzaman Khan, Huu Hao Ngo , Wenshan Guo, Yiwen Liu, Xinbo Zhang, Jianbo Guo, Soon Woong Chang, Dinh Duc Nguyen, JieWang, Biohydrogen production from anaerobic digestion and its potential as renewable energy, Renewable, Energy, Volume 129, Part B, p.754-p.768, 2018.
[ 18 ] Ibrahim Dincer, Calin Zamfirescu, Chapter 3 - Fossil Fuels and Alternatives, Advanced Power Generation Systems, p.95-p.141, 2014.
[ 19 ] Bert Rukes, Robert Taud, Status and perspectives of fossil power generation, Energy,
Volume 29, Issues 12–15, p.1853-p.1874, 2004.
[ 20 ] Mamoru Kaiho, Yoichi Kodera, Osamu Yamada, Estimation of heats of formation and combustion of coal, Fuel, Volume 237, p.536-p.544, 2019.
[ 21 ] Liwei Ren, Ruidi Wei, Tingchun Zhu, Co-gasification reactivity of petroleum coke with coal and coal liquefaction residue, Journal of the Energy Institute, 2019.
[ 22 ] Juan Barraza, Edwin Coley-Silva, Jorge Piñeres, Effect of temperature, solvent/coal ratio and beneficiation on conversion and product distribution from direct coal liquefaction, Fuel, Volume 172, p.153-p.159, 2016.
[ 23 ] Kaushlendra Singh, John Zondlo, Co-processing coal and torrefied biomass during direct liquefaction, Journal of the Energy Institute, Volume 90, Issue 4, p.497-p.504, 2017.
[ 24 ] Daniella L.Vale, Paula F.de Aguiar, Lize Mirela S.L.de Oliveira, Gabriela Vanini, Vinicius B.Pereira, Larissa O.Alexandre, Giovani S.C.da Silva, Luiz André Mendes, Alexandre O.Gomes, Débora A.Azevedo, Comprehensive and multidimensional tools for crude oil property prediction and petrochemical industry refinery inferences, Fuel, Volume 223,p.188-p.197, 2018.
[ 25 ] Mucahit Aydin, Natural gas consumption and economic growth nexus for top 10 natural Gas–Consuming countries: A granger causality analysis in the frequency domain, Energy, Volume 165, Part B, p.179-p.186, 2018.
[ 26 ] Philipp Hauser, Heidi U.Heinrichs, Bastian Gillessen, TheresaMüller, Implications of diversification strategies in the European natural gas market for the German energy system, Energy, Volume 151, p.442-p.454, 2018.
[ 27 ] 華健,吳怡萱,能源與永續,五南圖書出版股份有限公司,2008。
[ 28 ] Weiqiong Zhong, Haizhong An, Lei Shen, Tao Dai, Wei Fang, Xiangyun Gao, Di Dong, Global pattern of the international fossil fuel trade: The evolution of communities, Energy, Volume 123, p.260-p.270, 2017.
[ 29 ] Jian Hua, Hong-Gwo Shiu, Sustainable development of renewable energy on Wangan Island, Taiwan, Utilities Policy, Volume 55, p.200-p.208, 2018.
[ 30 ] International Energy Agency, Renewables information: Overview, 2017.
[ 31 ] 葉芳瑜,全球能源科技研發投入情勢分析,國研院科政中心發行,電子報,第15期,2016。
[ 32 ] Tomas Kåberger, Progress of renewable electricity replacing fossil fuels, Global Energy Interconnection, Volume 1, Issue 1, p.48-p.52, 2018.
[ 33 ] Vaibhav Dhyani, Thallada Bhaskar, A comprehensive review on the pyrolysis of lignocellulosic biomass, Renewable Energy, Volume 129, Part B, p.695-p.716, 2018.
[ 34 ] International Energy Agency, World Energy Balances overview, 2018.
[ 35 ] Susana Garrido Azevedo, Tiago Sequeira, Marcelo Santos, Luis Mendes, Biomass-related sustainability: A review of the literature and interpretive structural modeling, Energy, Volume 171, p.1107-p.1125, 2019.
[ 36 ] Sophia Darda, Theodoros Papalas, Anastasia Zabaniotou, Biofuels journey in Europe: Currently the way to low carbon economy sustainability is still a challenge, Journal of Cleaner Production, Volume 208, p.575-p.588, 2019.
[ 37 ] Michelle Arnold, Joseph A.Tainter, Deborah Strumsky, Energy Policy, Volume 124, p.54-p.62, 2019.
[ 38 ] S.N.Naik, Vaibhav V. Goud, Prasant K. Rout, Ajay K.Dalai, Production of first and second generation biofuels: A comprehensive review, Renewable and Sustainable Energy Reviews, Volume 14, p.578-p.597, 2010.
[ 39 ] Ayhan Demirbas, Biofuels sources, biofuel policy, biofuel economy and global biofuel projections, Energy Conversion and Management, Volume 49, Issue 8, p.2106-p.2116, 2008.
[ 40 ] Gerhard Knothe, Luis F.Razon, Biodiesel fuels, Progress in Energy and Combustion Science, Volume 58, p.36-p.59, 2017.
[ 41 ] İsmet Çelikten, Atilla Koca, Mehmet Ali Arslan, Comparison of performance and emissions of diesel fuel, rapeseed and soybean oil methyl esters injected at different pressures, Renewable Energy, Volume 35, Issue 4, p.814-p.820, 2010.
[ 42 ] Dennis Y.C. Leung, Xuan Wu, M.K.H. Leung, A review on biodiesel production using catalyzed transesterification, Applied Energy, Volume 87, Issue 4, p.1083-p.1095, 2010.
[ 43 ] Metin Gürü, Bursev Doğan Artukoğlu, Ali Keskin, Atilla Koca, Biodiesel production from waste animal fat and improvement of its characteristics by synthesized nickel and magnesium additive, Energy Conversion and Management, Volume 50, Issue 3, p.498-p.502, 2009.
[ 44 ] Fangrui Ma, Milford A Hanna, Biodiesel production: a review, Bioresource Technology
, Volume 70, Issue 1, p.1-p.15, 1999.
[ 45 ] Teresa M. Mata, António A. Martins, Nidia. S. Caetano, Microalgae for biodiesel production and other applications: A review, Renewable and Sustainable Energy Reviews
, Volume 14, Issue 1, p.217-p.232, 2010.
[ 46 ] Fangrui Ma, Milford A Hanna, Biodiesel production: a review, Bioresource Technology
, Volume 70, Issue 1, p.1-p.15, 1999.
[ 47 ] Rajdeep Shakya, Sushil Adhikari, Ravishankar Mahadevan, Saravanan R. Shanmugam, Hyungseok Nam, El Barbary Hassan, Thomas A. Dempster, Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties, Bioresource Technology, Volume 243, p.1112-p.1120, 2017.
[ 48 ] E.A. Ehimen, Algae biomass supply chains, Biomass Supply Chains for Bioenergy and Biorefining, p.319-p.332, 2016.
[ 49 ] Saravanan R. Shanmugam, Sushi lAdhikari, Rajdeep Shakya, Nutrient removal and energy production from aqueous phase of bio-oil generated via hydrothermal liquefaction of algae, Bioresource Technology, Volume 230, p.43-p.48, 2017.
[ 50 ] Mehran Parsa, Hamoon Jalilzadeh, Maryam Pazoki, Reza Ghasemzadeh, Mohammad Ali Abduli, Hydrothermal liquefaction of Gracilaria gracilis and Cladophora glomerata macro-algae for biocrude production, Bioresource Technology, Volume 250, February 2018, p.26-p.34, 2018.
[ 51 ] 蘇惠美,黃俊翰,蔡健偉,陳紫女英,海藻的利用與養殖,科學發展,433期,2019年。
[ 52 ] Bisheswar Karmakar, Gopinath Halder, Progress and future of biodiesel synthesis: Advancements in oil extraction and conversion technologies, Energy Conversion and Management, Volume 182, p.307-p.339, 2019.
[ 53 ] Oladapo Martins Adeniyi, Ulugbek Azimov, Alexey Burluka, Algae biofuel: Current status and future applications, Renewable and Sustainable Energy Reviews, Volume 90, July 2018, p.316-p.335, 2018.
[ 54 ] D.L. Cheng, H. H. Ngo, W.S. Guo, S.W. Chang, D.D. Nguyen, S.M. Kumar, Microalgae biomass from swine wastewater and its conversion to bioenergy, Bioresource Technology, Volume 275, p.109-p.122, 2019.
[ 55 ] Vaibhav Dhyani, Thallada Bhaskar, A comprehensive review on the pyrolysis of lignocellulosic biomass, Renewable Energy, Volume 129, Part B, p.695-p.716, 2018.
[ 56 ] Malin Brodin, María Vallejos, Mihaela Tanase Opedal, María Cristina Area, Gary Chinga-Carrasco, Lignocellulosics as sustainable resources for production of bioplastics – A review, Journal of Cleaner Production, Volume 162, p.646-p.664, 2017.
[ 57 ] Marcus Breunig, Philipp Gebhart, Ursel Hornung, Andrea Kruse, Eckhard Dinjus, Direct liquefaction of lignin and lignin rich biomasses by heterogenic catalytic hydrogenolysis, Biomass and Bioenergy, Volume 111, p.352-p.360, 2018.
[ 58 ] E. Hosseini Koupaie, S. Dahadha, A.A. Bazyar Lakeh, A. Azizi, E. Elbeshbishy, Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review, Journal of Environmental Management, Volume 233, p.774-p.784, 2019.
[ 59 ] Shady S. Hassan, Gwilym A. Williams, Amit K.Jaiswal, Lignocellulosic Biorefineries in Europe: Current State and Prospects, Trends in Biotechnology, Volume 37, Issue 3, p.231-p.234, 2019.
[ 60 ] Filipe Rego, Ana P. Soares Dias, Miguel Casquilho, Fátima C. Rosa, Abel Rodrigues, Fast determination of lignocellulosic composition of poplar biomass by thermogravimetry, Biomass and Bioenergy, Volume 122, p.375-p.380, 2019.
[ 61 ] Jun Yi Yeo, Bridgid Lai Fui Chin, Jun Kit Tan, Ying Sheng Loh, Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics, Journal of the Energy Institute, Volume 92, Issue 1, p.27-p.37, 2019.
[ 62 ] Haimiao Yu, Zilu Wu, Geng Chen, Catalytic gasification characteristics of cellulose, hemicellulose and lignin, Renewable Energy, Volume 121, p.559-p.567, 2018.
[ 63 ] Yiping Luo, Zheng Li, Xiaoling Li, Xiaofeng Liu, Jiajun Fan, James H. Clark, Changwei Hu, The production of furfural directly from hemicellulose in lignocellulosic biomass: A review, Catalysis Today, Volume 319, p.14-p.24, 2019.
[ 64 ] Chenxi Zhao, Enchen Jiang, Aihui Chen, Volatile production from pyrolysis of cellulose, hemicellulose and lignin, Journal of the Energy Institute, Volume 90, Issue 6, p.902-p.913, 2017.
[ 65 ] Wanwu Li, Habiba Khalid, Zhe Zhu, Ruihong Zhang, Guangqing Liu, Chang Chen, Eva Thorin, Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin, Applied Energy Volume 226, p.1219-p.1228, 2018.
[ 66 ] Mingfa Yang, Jingai Shao, Haiping Yang, Kuo Zeng, Zhengshun Wu, Yingquan Chen, Xiaowei Bai, Hanping Chena, Bioresource Technology, Volume 273, p.77-p.85, 2019.
[ 67 ] Daehwan Kim, David Orrego, Eduardo A. Ximenes, Michael R. Ladisch, Cellulose conversion of corn pericarp without pretreatment, Bioresource Technology, Volume 245, Part A, p.511-p.517, 2017.
[ 68 ] Binzhe Sun, Gege Peng, Lian Duan, Aihua Xu, Xiaoxia Li, Pretreatment by NaOH swelling and then HCl regeneration to enhance the acid hydrolysis of cellulose to glucose, Bioresource Technology, Volume 196, p.454-p.458, 2015.
[ 69 ] 張建安,劉德華,生物質能源利用技術,化學工業出版社,2009。
[ 70 ] Shan Xiangen, Shu Geping, Li Kejian, Zhang Xuwen, Wang Hongxue, Cao Xueping, Jiang Hongbo, Weng Huixin, Effect of hydrogenation of liquefied heavy oil on direct coal liquefaction, Fuel, Volume 194, p.291-p.296, 2017.
[ 71 ] Fatma Karaca, Esen Bolat, Coprocessing of a Turkish lignite with a cellulosic waste material: 1. The effect of coprocessing on liquefaction yields at different reaction temperatures, Fuel Processing Technology, Volume 64, Issues 1–3, p.47-p.55, 2000.
[ 72 ] Y. Matsumura, H. Nonaka, H. Yokura, A. Tsutsumi, K. Yoshida, Co-liquefaction of coal and cellulose in supercritical water, Fuel, Volume 78, Issue 9, p.1049-p.1056, 1999.
[ 73 ] Kaushlendra Singh, John Zondlo, Co-processing coal and torrefied biomass during direct liquefaction, Journal of the Energy Institute, Volume 90, Issue 4, p.497-p.504, 2017.
[ 74 ] Islam Rafiqul, Bai Lugang, Yongjie Yan, Tingchen Li, Study on co-liquefaction of coal and bagasse by factorial experiment design method, Fuel Processing Technology, Volume 68, Issue 1, p.3-p.12, 2000.
[ 75 ] Bingfeng Guo, Vincent Walter, Ursel Hornung, Nicolaus Dahmen, Hydrothermal liquefaction of Chlorella vulgaris and Nannochloropsis gaditana in a continuous stirred tank reactor and hydrotreating of biocrude by nickel catalysts, Fuel Processing Technology, Volume 191, August 2019, p.168-p.180, 2019.
[ 76 ] Anton Koriakin, Seunghyun Moon, Doo-Wook Kim, Chang-Ha Lee, Liquefaction of oil palm empty fruit bunch using sub- and supercritical tetralin, n-dodecane, and their mixture, Fuel, Volume 208, p.184-p.192, 2017.
[ 77 ] Paulo Sérgio Pedroso Corrêa Jr, Jianan Zhang, Electo Eduardo Silva Lora, Rubenildo Vieira Andrade, Luis Roberto de Mello e Pinto, Albert Ratner, Experimental study on applying biomass-derived syngas in a microturbine, Applied Thermal Engineering, Volume 146, p.328-p.337, 2019.
[ 78 ] Xiye Chen, Li Liu, Linyao Zhang, Yan Zhao, Penghua Qiu, Gasification reactivity of co-pyrolysis char from coal blended with corn stalks, Bioresource Technology Volume 279, p.243-p.251, 2019.
[ 79 ] Debarshi Mallick, Pinakeswar Mahanta, Vijayanand S.Moholkar, Co–gasification of coal/biomass blends in 50 kWe circulating fluidized bed gasifier, Journal of the Energy, Institute Available online, 2019.
[ 80 ] Ye Yang, Jinjiao Zhu, Li Yang, Yuezhao Zhu, Co-gasification characteristics of scrap tyre with pine sawdust using thermogravimetric and a whole-tyre gasifier reactor, Energy Procedia, Volume 158, p.37-p.42, 2019.
[ 81 ] Lihle D. Mafu, Hein W.J.P. Neomagus, Raymond C. Everson, Gregory N. Okolo, Christien A. Strydom, John R. Bunt, The carbon dioxide gasification characteristics of biomass char samples and their effect on coal gasification reactivity during co-gasification, Bioresource Technology, Volume 258, p.70-p.78, 2018.
[ 82 ] Liang Ding, Yongqi Zhang, Zhiqing Wang, Jiejie Huang, Yitian Fang, Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char, Bioresource Technology, Volume 173, p.11-p.20, 2014.
[ 83 ] Y. Zhang, S. Hara, S. Kajitani, M. Ashizawa, Modeling of catalytic gasification kinetics of coal char and carbon, Fuel, Volume 89, Issue 1, p.152-p.157, 2010.
[ 84 ] Fanfei Min, Mingxu Zhang, Yu Zhang, Yan Cao, Wei-Ping Pan, An experimental investigation into the gasification reactivity and structure of agricultural waste chars, Journal of Analytical and Applied Pyrolysis, Volume 92, Issue 1, p.250-p.257, 2011.
[ 85 ] Xiaohua Zhang, Hao Ma, Shubin Wu, Weikun Jiang, Weiqi Wei, Ming Lei, Fractionation of pyrolysis oil derived from lignin through a simple water extraction method, Fuel, Volume 242, p.587-p.595, 2019.
[ 86 ] Wei-Hsin Chen, Ming-Yueh Huang, Jo-Shu Chang, Chun-Yen Chen, Wen-JhyLee, An energy analysis of torrefaction for upgrading microalga residue as a solid fuel, Bioresource Technology, Volume 185, p0285-p.293, 2015.
[ 87 ] Jun Li, Artur Brzdekiewicz, Weihong Yang, Wlodzimierz Blasiak, Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching, Applied Energy, Volume 99, p.344-p.354, 2012.
[ 88 ] Xingxing Cheng, Zhi Huang, Zhiqiang Wang, Chunyuan Ma, Shouyan Chen, A novel on-site wheat straw pretreatment method: Enclosed torrefaction, Bioresource Technology, Volume 281, p.48-p.55, 2019.
[ 89 ] 行政院環境保護署主管法規查詢系統,空氣污染防制法第31條,查閱日期2019.05
[ 90 ] 蘇純緯,稻草資源化處理技術之研究,國立高雄海洋科技大學 海洋環境工程研究所,碩士學位論文,2013。
[ 91 ] Jensen, Claus & Rodriguez Guerrero, Julie & Karatzos, Sergios & Olofsson, Göran & Iversen, Steen. (2017). Fundamentals of Hydrofaction™: Renewable crude oil from woody biomass. Biomass Conversion and Biorefinery. 10.1007/s13399-017-0248-8.
[ 92 ] 台中市政府環境保護局資訊查詢系統,農廢露然活動網站,查閱日期2019.05
[ 93 ] P.J. Van Soest, J.B. Robertson, B.A. Lewis, Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition, Journal of Dairy Science, Volume 74, Issue 10, p.3583-p.3597, 1991.
[ 94 ] Janewit Wannapeera, Nakorn Worasuwannarak, Upgrading of woody biomass by torrefaction under pressure, Journal of Analytical and Applied Pyrolysis
Volume 96, p.173-p.180, 2012.
[ 95 ] DING Liang, ZHANG Yong-qi, HUANG Jie-jie, WANG Zhi-qing, FANG Yi-tian. Effects of pyrolysis pressure on the properties and gasification reactivities of biomass chars[J], Journal of Fuel Chemistry and Technology, 42(11), p.1309-p.1315.2014.
[ 96 ] T.G. Bridgeman, J.M. Jones, I. Shield, P.T. Williams, Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties, Fuel, Volume 87, Issue 6, p.844-p.856, 2008.
[ 97 ] Filippo Marchelli, Eleonora Cordioli, Francesco Patuzzi, Elena Sisani, Linda Barelli, Marco Baratieri, Elisabetta Arato, Barbara Bosio, Experimental study on H2S adsorption on gasification char under different operative conditions, Biomass and Bioenergy
Volume 126, p.106-p.116, 2019.
[ 98 ] Kexin Yi, Huan Liu, Jiaxing Wang, Geng Lu, Minghao Jin, Hongyun Hu, Hong Yao, The adsorption and transformation of SO2, H2S and NH3 by using sludge gasification ash: Effects of Fenton oxidation and CaO pre-conditioning, Chemical Engineering Journal
Volume 360, p.1498-p.1508, 2019.
[ 99 ] Andrea Bassani, Carlo Pirola, Enrico Maggio, Alberto Pettinau, Caterina Frau, Giulia Bozzano, Sauro Pierucci, Eliseo Ranzi, Flavio Manenti, Acid Gas to Syngas (AG2S™) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production, Applied Energy, Volume 184, p.1284-p.1291, 2016.
[ 100 ] L.F. Calvo, M. Otero, B.M. Jenkins, A. Morán, A.I. Garcı́a, Heating process characteristics and kinetics of rice straw in different atmospheres, Fuel Processing Technology
Volume 85, Issue 4, p.279-p.291, 2004.
[ 101 ] A. Singh, A Study of Reaction Kinetics for Thermochemical Conversion of Rice Straw, University of California, Davis, 1996.
[ 102 ] Eszter Barta-Rajnai, Bence Babinszki, Zoltán Sebestyén, Sándor István Czirok, Zoltán May, Emma Jakab, Zsuzsanna Czégény, On the significance of potassium and chlorine content of lignocellulose during torrefaction, Journal of Analytical and Applied Pyrolysis
Volume 135, p.32-p.43, 2018.

電子全文 電子全文(網際網路公開日期:20240807)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top