跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 18:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李昀哲
研究生(外文):LI, YUN-ZHE
論文名稱:考量不同建築材料之第五代行動網路小型基地台三維多目標佈署最佳化
論文名稱(外文):Multi-Objective Optimization for 3-Dimension Small Cell Deployment of 5G Considering Various Building Materials
指導教授:趙涵捷趙涵捷引用關係
指導教授(外文):CHAO, HAN-CHIEH
口試委員:趙涵捷卓信宏陳麒元曾繁勛
口試委員(外文):CHAO, HAN-CHIEHCHO, HSIN-HUNGCHEN, CHI-YUANTSENG, FAN-HSUN
口試日期:2019-07-20
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:57
中文關鍵詞:第五代行動網路無線回程網路超密集網路異構式網路非優勢排序演算法三維佈署
外文關鍵詞:5GWireless backhaul networkUltra dense networkHeterogeneous NetworkNSGA-IIThree-dimensional arrangement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:2
在這個網路流量逐漸成長的時代,第四代行動網路 (The fourth generation of mobile phone mobile communication technology standards, 4G) 的傳輸速率已經無法滿足人們需求,第五代行動網路 (The fifth generation mobile network, 5G) 已經蓄勢待發,因為相較過去的網路服務使用更高的頻率,其繞射能力變差,也就是穿牆後的訊號強度大幅衰減,這導致了基地台的傳輸距離縮短,因此5G的網路拓樸比起之前更加密集,使得基地台間的干擾有所增加,所以要享有高品質的5G服務便是要透過適當的基地台建設。然而現代人大多數時間都在室內,使得無線設備接收的訊號強度降低,尤其是更高頻的毫米波(millimeter Wave, mmWave)影響更劇,除此之外對於不同的建築材料,也會對訊號波造成不同程度的損耗。
現在毫米波的傳播模型都會考慮到高度的影響,一方面也因為在現代建築物的高度愈來愈高,但是以往的網路覆蓋研究大部分是基於二維環境所作出的結果,因此本研究希望藉由無線設備所接收的訊號強度 (Received Signal Strength Indicator, RSSI) 找出適合的基地台佈署方案,可以提升用戶的覆蓋率和降低佈署方案的成本之外還能保有用戶的訊號品質,由於以上三個目標具有權衡問題,因此我們基於NSGA-II (Non-dominated Sorting Genetic Algorithm-II) 這個多目標演算法提出了在複雜且三維空間的環境下,能模擬出滿足運營商和用戶需求覆蓋的佈署演算法Improved-ANSGA-II,並比較不同材質的建築物構成的環境對訊號造成的影響,從而導致佈署結果的差異,最後探討在不同的現實環境中對於佈署目標的選擇。
Now network throughput is growing rapidly. The 4G (The fourth generation of mobile phone mobile communication technology standards) transmission rate has been unable to satisfy needs of users. The next-generation network (The fifth generation mobile network, 5G) is ready to release. 5G requires higher frequency than past network. But the signal strength after passing through the wall is greatly attenuated, which causes the transmission distance to be shortened. The architecture of 5G will be an ultra-dense network, resulting in increased interference between base stations. Therefore, network coverage is an important issue when building high-quality 5G services through base station construction. However, people spend most of their time indoors, reducing the signal strength received by wireless devices. In particular, the higher frequency millimeter waves will be more affected by the building. In addition, for different building materials, it will also cause different intensity loss to the signal.
The mmWave (millimeter-wave) propagation model takes into account the influence of building height. On the other hand, the higher the height of the building, the greater the impact. However, most of the research on network coverage in the past is based on two-dimensional environment. Therefore, this thesis aims to find the appropriate deployment position of the base station according to the RSSI (Received Signal Strength Indicator), coverage, and deployment cost. Since these three objectives have a trade-off problem, we propose an improved-ANSGA-II method to solve the 3D deployment problem for the base station. Comparing the effects of different materials on the signal, thus causing differences in deployment results. Finally exploring the choice of deployment targets in different practical situations.
摘要 I
ABSTRACT II
目錄 III
圖目錄 IV
表目錄 VI
第一章 簡介 1
1.1 研究背景 1
1.1.1 超密集異構網路 1
1.1.2 無線回程網路 2
1.1.3 無線通訊 3
1.2 研究動機 5
1.3 研究目標 6
第二章 文獻探討 7
第三章 問題定義 9
3.1 參數定義 9
3.2 用戶的訊號功率 12
3.3 覆蓋率 16
3.4 成本 16
3.5 規劃目標 16
第四章 演算法 18
4.1 NSGA-II演算法 18
4.1.1 Pareto最優 18
4.1.2 基於Pareto改善的演算法 19
第五章 模擬 27
5.1 模擬環境 27
5.2 模擬結果 29
第六章 討論 53
第七章 結論 54
參考文獻 55
[1]"Cisco Visual Networking Index: Global Mobile Data Traffic forecast update, 2017-2022 white paper," [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
[2]J. Conover, "Tiny waves, big challenges: Getting 5G mmWave mobility right," [Online]. Available: https://www.edn.com/electronics-blogs/5g-waves/4461277/Tiny-waves--big-challenges--Getting-5G-mmWave-mobility-right
[3]M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport and E. Erkip, "Millimeter Wave Channel Modeling and Cellular Capacity Evaluation," IEEE Journal on Selected Areas in Communications, vol. 32 , no. 6, pp. 1164 - 1179, June 2014.
[4]X. Ge, S. Tu, G. Mao, C. Wang and T. Han, "5G Ultra-Dense Cellular Networks," IEEE Wireless Communications, vol. 23, no. 1, pp. 72 - 79, February 2016.
[5]"The 1000× Mobile Data Challenge," [Online]. Available: https://www.qualcomm.com/media/documents/files/1000x-mobile-data-challenge.pdf.
[6]X. Ge, H. Cheng, M. Guizani and T. Han, "5G wireless backhaul networks: challenges and research advances," IEEE Network, vol. 28, no. 6, pp. 6 - 11, November - December 2014.
[7]S. K. Islam and M. R. Haider, "Sensors and Low Power Signal Processing," 2010.
[8]"ABI Research Anticipates In-Building Mobile Data Traffic to Grow by More Than 600% by 2020," [Online]. Available: https://www.abiresearch.com/press/abi-research-anticipates-building-mobile-data-traf/
[9]M. S. Islam, F. Begum, A. U. Hani, M. A. Matin and M. M. Hossain, "On the determination of penetration losses of microwave signals in different building materials," 5th Brunei International Conference on Engineering and Technology (BICET 2014), Bandar Seri Begawan, 2014, pp. 1-5.
[10]"5G; Study on channel model for frequencies from 0.5 to 100 GHz (3GPP TR 38.901 version 14.3.0 Release 14)," [Online]. Available: https://www.etsi.org/deliver/etsi_tr/138900_138999/138901/14.03.00_60/tr_138901v140300p.pdf
[11]"Mobile data traffic growth outlook," [Online]. Available: https://www.ericsson.com/en/mobility-report/reports/november-2018/mobile-data-traffic-growth-outlook
[12]C. Skouroumounis, C. Psomas and I. Krikidis, "Low-Complexity Base Station Selection Scheme in mmWave Cellular Networks," IEEE Transactions on Communications, vol. 65, no. 9, pp. 4049 - 4064, Septmber 2017.
[13]B. Soret, K. I. Pedersen, N. T. K. Jørgensen and V. Fernández-López, "Interference Coordination for Dense Wireless Networks," IEEE Communications Magazine, vol. 53, no. 1, pp. 102 - 109, January 2015.
[14]A. Taufique, M. Jaber, A. Imran and Z. Dawy, "Planning Wireless Cellular Networks of Future: Outlook, Challenges and Opportunities," IEEE Access, pp. 4821 - 4845.
[15]F. Ding, D. Zhang, A. Song, J. Li, "A Coverage and Repair Optimization Algorithm for Hybrid Sensor Networks," Journal of Internet Technology, vol. 19, no. 3, pp. 909 - 917, May 2018.
[16]T. G. Nguyen, C. So-In, N. G. Nguyen, "Barrier Coverage Deployment Algorithms for Mobile Sensor Networks," Journal of Internet Technology, vol. 18, no. 7, pp. 1689 - 1699, December 2017.
[17]C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher and E. Hepsaydir, "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Communications Magazine, vol. 52, no. 2, pp. 122 - 130, February 2014.
[18]O. Zorlu and O. K. Sahingoz, "Increasing the coverage of homogeneous wireless sensor network by genetic algorithm based deployment," 2016 Sixth International Conference on Digital Information and Communication Technology and its Applications (DICTAP), Konya, 2016, pp. 109 - 114.
[19]E. Amaldi, A. Capone and F. Malucelli, "Planning UMTS base station location: Optimization models with power control and algorithms," IEEE Transactions on wireless communications, vol. 2, no. 5, pp. 939 - 952, September 2003.
[20]W. Zhao, S. Wang, C. Wang and X. Wu, "Approximation algorithms for cell planning in heterogeneous networks," IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp. 1561 - 1572, February 2017.
[21]H. Ghazzai, E. Yaacoub, M. Alouini, Z. Dawy and A. Abu-Dayya, "Optimized LTE cell planning with varying spatial and temporal user densities," IEEE Transactions on Vehicular Technology, vol. 65, no. 3, pp. 1575 - 1589, March 2016.
[22]C. Tsai, H. Cho, T. K. Shih, J. Pan and J. J. P. C. Rodrigues, "Metaheuristics for the deployment of 5G," IEEE Wireless Communications, vol. 22, no. 6, December 2015.
[23]A. L. Rezaabad, H. Beyranvand, J. A. Salehi and M. Maier, "Ultra-Dense 5G Small Cell Deployment for Fiber and Wireless Backhaul-Aware Infrastructures," IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 12231 - 12243, December 2018.
[24]B. Yang, G. Mao, X. Ge, H. Chen, T. Han and X. Zhang, "Coverage analysis of heterogeneous cellular networks in urban areas," 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, 2016, pp. 1-6.
[25]E. Turgut and M. C. Gursoy, "Coverage in Heterogeneous Downlink Millimeter Wave Cellular Networks," IEEE Transactions on Communications, vol. 65, no. 10, pp. 4463 - 4477, October 2017.
[26]B. Yang, G. Mao, X. Ge, M. Ding and X. Yang, "On the Energy-Efficient Deployment for Ultra-Dense Heterogeneous Networks With NLoS and LoS Transmissions," IEEE Transactions on Green Communications and Networking, Vol. 2, no. 2, pp. 369 - 384, June 2018.
[27]E. Turgut, M. C. Gursoy, "Coveragee in Heterogeneous Downlink Millimeter Wave Cellular Networks," IEEE Transactions on Communications, vol. 65, no. 10, pp. 4463 - 4477, October 2017.
[28]C. Galiotto, N. K. Pratas, N. Marchetti, L. Doyle, "A stochastic geometry framework for LOS/NLOS propagation in dense small cell networks," 2015 IEEE International Conference on Communications (ICC), London, 2015, pp. 2851 - 2856.
[29]C. Galiotto, N. K. Pratas, L. Doyle, N. Marchetti, "Effect of LOS/NLOS propagation on 5G ultra-dense networks," Computer Networks, vol. 120, pp. 126 - 140, June 2017.
[30]K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182 - 197, April 2002.
[31]"Spectrum for Terrestrial 5G Networks: Licensing Developments Worldwide," [Online]. Available: https://gsacom.com/paper/5g-spectrum-for-terrestrial-networks-june-2019/
[32]"Small Cell Networks and the Evolution of 5G (Part 1)," [Online]. Available: https://www.qorvo.com/design-hub/blog/small-cell-networks-and-the-evolution-of-5g
[33]D. Wu, X. Gu, J. Gu, W. Liao, L. Zhang and Y. Liu, "Cost optimization based network deployment strategies for future dense networks," 2016 19th International Symposium on Wireless Personal Multimedia Communications (WPMC), Shenzhen, 2016, pp. 19 - 24.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top