跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 10:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何佳哲
研究生(外文):Ho, Chia-Che
論文名稱:都會區交通壅塞疏解控制策略模擬
論文名稱(外文):Simulation-based Control Strategies for Eliminating Urban Networks Traffic Jams
指導教授:黃義盛黃義盛引用關係
指導教授(外文):Yi-Sheng Huang
口試委員:翁義順陳軍杰林振輝蘇英俊
口試日期:2019-07-04
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:88
中文關鍵詞:交通壅塞Aimsun交通策略
外文關鍵詞:CongestionAimsunTraffic Strategy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
都會人口日益漸多,伴隨車用量提升,在車用量的高峰期發生無法預期之事故,使得都會交通壅塞現象難以避免,如果能快速疏緩交通壅塞之車流,將會有益於都會發展。本論文配合不同車流量之壅塞路網作為研究對象,從宏觀角度分析整體路網之堵塞形成,再透過微觀方向設計交通信號燈燈控制與強制車流行進方向控制之策略,進而針對壅塞程度投入對應策略,以達優化加速排解交通壅塞之狀況。
本模擬研究利用Aimsun建立11×11棋盤式交通網路模型,在路網之車流承載能力範圍內定義高車流量,試以在不同車流狀態下模擬道路中心位置發生交通事故,逐步觀察交通壅塞的過程,並收集與分析各時間點之有效交通數據,目的在於了解壅塞狀況在交通數據的特性,進而搭配不同控制方法疏緩交通困境;策略包含強制車流行進方向(禁止標誌方法)與控制交通信號燈相位時脈週期,前者避免車流繼續擴大至其他區域,後者則加速引導已離開壅塞區域之車流,縮短紅綠燈阻擋車流之時間,並且降低道路之車載負擔。經實驗模擬結果顯示,策略能有效降低整體車流密度與道路列隊車輛等交通指標數值,據此證實本研究可有效排除交通事故後所造成之壅塞現象。

With the increasing population of the metropolitan area and the increase of vehicle usage, unexpected incidents occur during the rush hour, which leads to traffic congestion in the metropolitan area. If the traffic congestion can be slowed down quickly, it will be beneficial to the development of the metropolitan area. In this paper, the traffic network with high traffic flow is taken as the research object, and the formation of congestion in the whole road network is analyzed from a macro perspective. Then, the strategies of traffic signal control and forced vehicle direction control are designed through microcosm, and in order to optimize and speed up the traffic congestion resolution, corresponding strategies are applied in the congestion.
In the initial stage of the simulation, Aimsun was used to build an 11*11 traffic network model. The ultimate carrying capacity of the traffic road was judged by visual characteristics, and then the maximum traffic flow could be found out. Then, by simulating the traffic incident at the center of the road, the process of traffic congestion was observed step by step, and the effective traffic data at each time interval were collected and analyzed, and different controls were collocated. The strategies include two kinds of policy: the ban traffic signal that is the mandatory vehicle direction and the control traffic signal phase time cycle. The former avoids traffic flow expanding to other areas, the latter accelerates traffic flow that has left congested areas and shortens the duration of temporary blocking traffic flow by traffic lights, and then reduces the vehicle load on the road through the experimental simulation results. It can effectively reduce the overall traffic density and road queue vehicles, which proves that this study can effectively eliminate the congestion caused by traffic accidents.


摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第1章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 車流理論發展 2
1.2.2 模擬程式發展 2
1.2.3 策略文獻回顧 4
1.3 研究方法與步驟 7
1.4 論文架構 10
第2章 交通路網之建置模擬與車流狀態評估 11
2.1 AIMSUN路網相關設定說明 11
2.1.1 建置交通路網 11
2.1.2 路網配置 14
2.1.3 輸出設定 17
2.2 交通狀態評估 18
2.2.1 數據資料庫應用 22
2.2.2 指標公式及意義 24
2.3 棋盤式11×11交通路網之建置 18
第3章 模擬壅塞與控制策略設計 34
3.1 交通壅塞特徵 34
3.2 觀察基於事故之交通壅塞現象 35
3.3 控制策略設計 42
3.3.1 Diamond型控制策略 42
3.3.2 Diamond + Frame型控制策略 43
3.3.3 Diamond + Area型控制策略 45
第4章 模擬控制策略結果與驗證 46
4.1 模擬低車流量 47
4.1.1 輕微交通壅塞與策略模擬 48
4.2 模擬中車流量 51
4.2.1 輕微交通壅塞與策略模擬 52
4.2.2 中度交通壅塞與策略模擬 55
4.3 模擬高車流量 60
4.3.1 輕微交通壅塞與策略模擬 61
4.3.2 中度交通壅塞與策略模擬 64
4.3.3 嚴重交通壅塞與策略模擬 69
第5章 結論與未來展望 74
5.1 結論 74
5.2 未來展望 74

[1] 林平, 汽車史話, 北京: 電子工業出版社, 2005.
[2] Femke van Wageningen-Kessels, Serge P. Hoogendoorn, Kees Vuik, and Hans van Lint, "Traffic Flow Modeling: Genealogy," in Traffic and Transportation Simulation, Washington, Transportation Research Board, 2014, pp. 1-16.
[3] Greenshields, B. D., J. R. Bibbins, W. S. Channing, and H. H. Miller., "A Study of Traffic Capacity Highway Research Board Proceedings," Highway Research Board, vol. 14, no. 1, pp. 448-477, 1935.
[4] Edward B. Lieberman, "Brief History of Traffic Simulation," in Traffic and Transportation Simulation, Washington, Transportation Research Board, 2014, pp. 17-29.
[5] Special Report 209: Highway Capacity Manual, Washington: Transportation Research Board, 1985.
[6] TSS-Transport Simulation Systems, “Aimsun User's manual,” TSS-Transport Simulation Systems, 2014-2015.
[7] TSS-Transport Simulation Systems, "Aimsun 8 Scripting Manual," TSS-Transport Simulation Systems, 2014.
[8] Peter Vortisch, "History of VISSIM’s Development," in Traffic and Transportation Simulation, Washington, Transportation Research Board, 2014, pp. 55-63.
[9] Kaan Ozbay, Sandeep Mudigonda, Ender Faruk Morgul, Hong Yang, and Bekir Bartin, "Big Data and the Calibration and Validation of Traffic Simulation Models," in Traffic and Transportation Simulation, Washington, Transportation Research Board, 2014, pp. 92-122.
[10] J. Long, Studies on Congestion Propagation Properties and Dissipation Control Strategies of Urban Road Traffic, Beijing: Beijing Jiaotong University, 2009.
[11] Penina Roberg-Orenstein , Chris Abbess & Chris Wright, "Traffic Jam Simulation," Journal of Maps, vol. 3, no. 1, pp. 107-121, 2007.
[12] Rod J. Troutbeck, Soichiro Kako, "Limited priority merge at unsignalized intersections," Transportation Research Part A: Policy and Practice, vol. 33, no. 3-4, pp. 291-304, 1999.
[13] Douglas W. Harwood, John M. Mason, Robert E. Brydia, "Design policies for sight distance at stop-controlled intersections based on gap acceptance," Transportation Research Part A: Policy and Practice, vol. 33, no. 3-4, pp. 199-216, 1999.
[14] Hashim M.N.Al-Madani, "Dynamic vehicular delay comparison between a police-controlled roundabout and a traffic signal," Transportation Research Part A: Policy and Practice, vol. 37, no. 8, pp. 681-688, 2003.
[15] Haozhi Zhang, Ziyou Gao, "Two-way road network design problem with variable lanes," Journal of Systems Science and Systems Engineering, vol. 16, no. 1, pp. 50-61, 2007.
[16] Chris Wright, Penina Roberg, "The conceptual structure of traffic jams," Transport Policy, vol. 5, no. 1, pp. 23-35, 1 1998.
[17] Penina Roberg, Christopher R. Abbess, "Diagnosis and treatment of congestion in central urban areas," European Journal of Operational Research, vol. 104, no. 1, pp. 218-230, 1998.
[18] Jiancheng Long, Ziyou Gao, Penina Orenstein, and Hualing Ren, "Control Strategies for Dispersing Incident-Based Traffic Jams in Two-Way Grid Networks," IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, vol. 13, no. 2, pp. 469-481, 6 2012.
[19] Femke vanWageningen-Kessels, Multi-class continuum traffic flow models: Analysis and simulation methods, Netherlands: TRAIL Resarch School, 2013.
[20] "Wikipedia, the free encyclopedia," Wikimedia Foundation, Inc., 6 5 2019. [Online]. Available: https://en.wikipedia.org/wiki/Traffic_congestion. [Accessed 11 5 2019].
[21] Yi-Sheng Huang, Wei-Ping Huang, Wei-Pin Wu, "Analysis of urban traffic jam control strategies using simulation technology," 2016 IEEE 13th International Conference on Networking, Sensing, and Control (ICNSC), pp. 1-6, 28-30 4 2016.
[22] Yi-Sheng Huang, Yi Han, Weimin Wu, Jiliang Luo, "Based on simulation method for solving traffic jam problems," 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1324-1329, 1-4 11 2016.
[23] Bo-Yang Chen, Design and Analysis of Intelligent Traffic Light Control Systems Using Synchronized Timed Petri Nets, Ilan: National Ilan University, 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top