跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/14 17:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹元政
論文名稱:探討咖啡渣經連續高溫碳化爐後所產生的副產物再利用之可行性
論文名稱(外文):Feasibility Study of Reusing the By-products Produced by Coffee Grounds After Using the Carbonization furnace Technology
指導教授:李元陞
口試委員:張育傑林文印
口試日期:2019-07-16
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:環境工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:48
中文關鍵詞:咖啡渣碳化再活化吸附再利用
相關次數:
  • 被引用被引用:0
  • 點閱點閱:368
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因全球暖化,全世界的學者開始積極投入發展替代能源以及綠色相關產業,來減少使用化石燃料,降低溫室氣體的排放。而近年來人們喝咖啡的量急速上升,產生數量龐大的咖啡渣,若我們能將這些咖啡渣再利用作為替代的能源,不僅可以減少環境的負擔,更能解決咖啡渣的問題。
本研究採用碳化技術,將咖啡渣經連續高溫碳化爐碳化與再活化後,收集產生的裂解油及碳,來研究是否能再利用。會將這些產物進行分析,設定元素分析、熱值分析、熱重分析等檢驗測定。
實驗中將碳化溫度設定為400 °C和450 °C,碳化時間定為兩小時,收集兩個溫度下所產生的裂解油來做後續的實驗,並將450 °C下所產生的碳收集後,進行800 °C及850 °C兩小時的再活化試驗。
在碳化溫度400°C下時,收集到的裂解油平均熱值約為6348 Kcal/Kg,而在碳化溫度450°C下時,收集到的裂解油平均熱值約為7528 Kcal/Kg,與車用汽柴油之熱值相比是略低的;再活化溫度800°C時,收集到的碳平均熱值約為6902 Kcal/Kg,而再活化溫度850°C時,收集到的碳平均熱值約為8019 Kcal/Kg,與煤炭及固態廢棄物衍生燃料(RDF)之熱值相比是較高的。
將咖啡渣及碳化與活化後的碳,進行吸附原廠放流水之實驗,發現效果不佳,檢測出吸光度、COD及真色色度,皆呈現上升狀態,且數值較高於原廠放流水所測得的值。在實驗過程中,水樣會隨時間變長而混濁度增加,可能的原因是原本在碳中的物質被釋出,使得吸附的效果不佳,也造成其他數值的上升。
利用碳化及再活化技術將咖啡渣再製後,轉為資源化的物質,不但能解決咖啡渣數量龐大的問題,更能將這些再製品作為綠色能源來使用,降低化石燃料的使用率,以減少溫室氣體的排放。咖啡渣是有很高的附加價值,且具有再利用的潛能。

Because of global warming, scholars around the world have begun to actively invest in the development of alternative energy and green related industries to reduce the use of fossil fuels and reduce greenhouse gas emissions. In recent years, the amount of coffee people drink has increased rapidly, which has resulted in a large number of coffee grounds. If we can reuse these coffee grounds as an alternative energy source, it will not only reduce the burden on the environment, but also solve the problem of coffee grounds.
In this study, carbonization technology is adopted to collect cracked oil and carbon generated after carbonization and reactivation of coffee grounds in a continuous high temperature carbonization furnace to study whether they can be reused or not. These products will be analyzed, set the composition analysis, calorific value analysis, thermogravimetric analysis and other tests.
In the experiment, the carbonization temperature was set at 400°C and 450°C, and the carbonization time was set at two hours. The cracked oil generated at the two temperatures was collected for subsequent experiments, and the carbon generated at 450°C was collected for reactivation experiments at 800°C and 850°C for two hours.
At the carbonization temperature of 400°C, the average calorific value of pyrolysis oil collected is about 6348 Kcal/Kg, while at the carbonization temperature of 450°C, the average calorific value of pyrolysis oil collected is about 7528 Kcal/Kg, which is slightly lower than the calorific value of gasoline and diesel oil used in vehicles. The average calorific value of carbon collected at reactivation temperature of 800°C is about 6902 Kcal/Kg, while the average calorific value of carbon collected at reactivation temperature of 850°C is about 8019 Kcal/Kg, which is higher than the calorific value of coal and solid waste derived fuel (RDF).
The adsorption of coffee grounds and carbonized and activated carbon on the original water discharge was not good, and the measured absorbance, COD and true color were all increased, which were all higher than those measured by the original water discharge. During the experiment, the water sample became more and more cloudy over time, possibly due to the release of materials that were originally in the carbon, making the adsorption effect poor and causing other values to rise.
Use of carbonization and activation technology will coffee grounds again again, into the resource of material, not only can solve the problem of enormous number of coffee grounds, can also be used these products again as a green energy, reduce the use of fossil fuels, to reduce greenhouse gas emissions, coffee grounds have high additional value, and have the potential to recycle.

摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1-1研究動機 1
1-2研究目的 2
第二章 文獻回顧 3
2-1活性碳 3
2-2碳化 5
2-3活化 6
2-4再生 7
2-4-1傳統的活性碳再生方法 7
2-4-2新興的活性碳再生技術 7
2-5咖啡 9
2-6吸附 10
2-6-1 Freundlich Equation 11
2-6-2 Langmuir Equation 12
2-6-2 BET(Brunauer-Emmett-Teller)Equation 13
第三章 實驗材料與方法 15
3-1實驗流程 15
3-2實驗材料與設備 16
3-3實驗方法 21
3-3-1咖啡渣的碳化及再活化 21
3-3-2元素分析 21
3-3-3熱值分析 26
3-3-4熱重分析 30
3-3-5吸附實驗 30
3-3-6 COD檢測 30
3-3-7真色色度 31
第四章 結果與討論 35
4-1元素分析 35
4-2熱值測定 36
4-3熱重分析 37
4-4吸附實驗 39
4-5 COD檢測 42
4-6色度 43
第五章 結論與建議 44
參考文獻 45


王慧真,“咖啡的藝術”,綜合出版社(1998)。
王川威,侯仁義,“我國可燃燒再生能源及廢棄物統計方式探討”,中華民國能源經濟學會。
田口護,“咖啡大全”,積木文化(2004)。
江孟霓,“以咖啡渣提高白樺茸生物活性成分含量之研究”,朝陽科技大學應用化學系碩士論文(2017)。
呂豪豪,劉玉學,楊生茂,“生物質炭化技術及其在農林廢棄物資源化利用中的應用”,浙江農業科學(2015)。
李宛凌,“台灣咖啡產業的歷史考察”,國立台北教育大學社會科教育學研究所碩士論文(2008)。
周昱葳,許水龍,“世界咖啡百科”,品度股份有限公司(2002)。
林以萱,“咖啡渣再利用之研究”,國立成功大學工程科學系碩士論文(2014)。
邱正宏,“吸附於活性碳表面揮發性有機物之熱脫附動力學研究”,國立中山大學環境工程研究所碩士論文(1993)。
柯木興,“咖啡物語—咖啡學入門”,中原文化出版社(1998)。
陳昭義, “工安環保” ,經濟部工業局(2001)。
張淑芬,程永雄,徐信次,朱慶國,“台灣咖啡之介紹” ,農業試驗所技術服務,第六十七期(2006)。
張淑芬,楊宏仁,劉禎棋,林明瑩,“咖啡栽種管理” ,農業試驗所所特刊,第一百五十七號( 2011)。
黃國棟,“焙炒條件對咖啡豆香氣形成影響之研究”,國立屏東科技大學食品科學系碩士論文(2003)。
詹豐銘, “生咖啡豆在不同烘焙條件下焙炒後所調製咖啡之成分分析”,國立台灣大學園藝學所碩士論文(2007)。
經濟部能源局, “廢棄物能源利用技術開發與推廣計畫” (2004)。
經濟部能源局, “能源統計手冊”( 2012)。
劉明翰, “粉狀活性碳吸附氯化汞之研究:操作參數之影響及恆溫吸附模式之建立”,碩士論文,國立中山大學環境工程研究所(2001)。
謝鈞盛,呂媚君,許芯瑜,翁蓉薇,陳永祥,吳建一,“以活性碳去除味精發酵廢液色度之等溫吸附模式”,大葉大學生物產業科技學系(2007)。
APEC, Definition of Products and Flows in APEC Reporting Format for Annual Energy Demand-Supply Data,(2005).
C.C. Lin, “Application of Granular Activated Carbon for Water and Wastewater Purification”, Ph.D. Dissertation, University of Texas at Dallas, USA, (1982).
Carmem T. Primaz, Tiago Schena, Eliane Lazzari, Elina B. Caramão, Rosângela A. Jacques, Influence of the temperature in the yield and composition of the bio-oil from the pyrolysis of spent coffee grounds: Characterization by comprehensive two dimensional gas chromatography,(2018).
D. Avnir and D. Farin, “Fractal Scaling Laws in Heterogeneous Chemistry, Part I :Adsorption, Chemisorption and Interactions between Adsorbates”, J. Chem., Vol. 14, pp.197-206, (1990).
D. R. Vardon, B. R. Moser, W. Zheng, K. Witkin, R. L. Evangelista, T. J.Strathmann, et al., "Complete Utilization of Spent Coffee Grounds to Produce Biodiesel, Bio-Oil, and Biochar," Acs Sustainable Chemistry& Engineering, vol. 1, pp. 1286-1294,(2013).
Derek R. Vardon,Bryan R. Moser,Wei Zheng,Katie Witkin,Roque L. Evangelista,Timothy J. Strathmann,Kishore Rajagopalan,Brajendra K. Sharma, Complete Utilization of Spent Coffee Grounds To Produce Biodiesel, Bio-Oil, and Biochar,( 2013).
IEA, Energy Statistics Manual,(2005).
IEA, Energy Statistics of OECD Countries,(2009).
I.K. Kookos, Technoeconomic and environmental assessment of a process for biodiesel production from spent coffee grounds (SCGs),(2013).


L.D. Benefield, J.F. Judkins and B.L. Weand, “Removal of Soluble Organic Materials from Wastewater by Carbon Adsorption, “Prentice-Hall Inc., Englewood Cliffs, New .Jersey., pp.365-402,(1982).
M.M. Dubinin, G.M. Plarnik and E.F. Ezverina, “Integrated Study of the Porous Structure of Activated Carbon from Carbonized Source”, Carbon, Vol. 2, pp.261-268, (1964).
M. Manes and J.E. Hofer,“Application of the Polanyi Adsorption Potential Theory to Adsorption from Solution on Activated Carbon”, J. Phys. Chem., Vol. 73, No. 3, pp.584-590, (1969) .
M. Smisek and S. Cerny, ”Activated Carbon”, Elserier Publishing Company, Amsterdam, (1970).
M.M. Dubinin, “Adsorption Properties and Microporous Structure of Carbonaceous Adsorbents”, Carbon, Vol. 25, pp.593-589,(1987).
Mussatto, S. I., Machado, E. M. S., Martins, S., Teixeira, J. A., "Production, composition, and application of coffee and its industrial residues, " Food Bioprocess Technology, (2011).
N. Kondamudi, S. K. Mohapatra, and M. Misra, "Spent Coffee Groundsas a Versatile Source of Green Energy," Journal of Agricultural and Food Chemistry, vol. 56, pp. 11757-11760, (2008).
Narasimharao Kondamudi,Susanta K. Mohapatra and Mano Misra, Spent Coffee Grounds as a Versatile Source of Green Energy,( 2008).
P.L. Cherrmisinoff and F. Ellerbusch, “Carbon Adsorption Handbook”, Ann Arbon Science Publishers Inc., (1978).
Ruthven, Principles of Adsorption and Adsorption Processes, (1984).
Sophie Bendall,Max Birdsall-Wilson,Rhodri Jenkins,Y.M. John Chew,Christopher J. Chuck, Showcasing Chemical Engineering Principles through the Production of Biodiesel from Spent Coffee Grounds,( 2015).

電子全文 電子全文(網際網路公開日期:20240801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊