(3.227.235.183) 您好!臺灣時間:2021/04/13 08:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊明雄
研究生(外文):CHUANG MING-HSIUNG
論文名稱:在無線通訊設備移動平臺上以SCTP通訊協定實現Mobile IP垂直換手機制之研究
論文名稱(外文):Realization of Vertical Handoff of Mobile IP on Mobile Platforms Using SCTP
指導教授:王煌城
指導教授(外文):WANG HWANG-CHENG
口試委員:郭芳璋林作俊李克怡胡鳳義
口試委員(外文):KUO FANG-CHANGLIN CHO-CHINLEE KEH-YIHU FENG-I
口試日期:2019-07-11
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電機資訊學院碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:68
中文關鍵詞:SCTP多重定址多重串流服務品質保證換手機制
外文關鍵詞:SCTPMulti-HomingMulti-StreamingQoSHandoff
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年行動裝置因硬體製造技術逐漸純熟,加上無線通訊技術快速演進,大大提升行動裝置運算能力。隨著無線網路傳輸整體效能與日俱增 ,多媒體及視訊等多元化服務逐漸轉換於無線網路,須提高網路品質確保服務暢順運作以達到無縫式存取服務。下一代無線網路技術由各種不同型態無線網路組成,存取技術為異質無線網路環境。使用者可任意切換網路連線,藉由高效率網路換手機制來提升並維持通訊系統服務品質。為改善TCP/UDP協定用於多重連結網路環境效能,使用IETF所提出串流控制傳輸協定(Stream Control Transmission Protocol, SCTP)特性,在不變動現有的網路架構下,採用SCTP通訊協定進行傳輸,可解決TCP服務之應用程式不易於轉換成行動服務之難題,確保在行動網路環境下的服務品質,加速行動網際網路普及化並有效提升行動節點(Mobile Node, MN)傳輸效能,為本論文主要研究目的。
本論文之模擬為3G/4G與Wi-Fi無線區域網路整合異質無線網路環境,利用多重定址Multi-Homing特性結合動態位址建置及功能擴充,使行動裝置達到垂直換手目的。行動節點(Mobile Node)以iOS行動裝置模擬端點設備,對應節點(Correspondent Node)以 Android行動裝置模擬端點設備。模擬CBR封包從傳送端至接收端的傳送,行動裝置以FTP應用方式分別在10秒、20秒及30秒傳送資料至模擬一、模擬二及模擬三。因CBR封包與FTP封包之間,因網路產生壅塞,不同應用之間互搶頻寬,產生雜訊干擾,傳輸延遲將導致RTT值增加,即時偵測傳輸路徑頻寬變化以確保服務不被中斷,以作為路徑切換判斷依據,在服務品質保證機制此方法中以頻寬需求、傳輸延遲時間及封包遺失作為路徑選擇的依據,探討三種不同的異質網路架構進行模擬:(一)、3G至WiFi_Web Browsing;(二)、WiFi至LTE_VoIP;(三)、3G至LTE_Video Streaming,分析傳輸效能在路徑切換與無路徑切換的影響。當行動裝置在異質網路移動,因頻寬不足發生壅塞而產生換手動作,啟動服務品質保證,並考量不同服務等級路徑特作有效分配,以預期達到服務品質之保障,讓網路中頻寬分配更具效率,觀察整體資料傳輸量變化與各個傳輸路徑可用頻寬變化。垂直換手(Vertical Handoff, VHO)屬於跨系統網路切換,同時使用多種通訊服務之無線網路。因異質無線網路(Heterogeneous Wireless Networks)頻段與協定間無法互連,須透過垂直換手方法從原無線網路切換至另一個不同架構無線網路上,將面臨可能發生的網路換手問題及挑戰,需將垂直換手延遲降低至水平換手的水平,以降低換手的延遲時間。
本論文針對SCTP通訊協定的關聯基本運作、多重定址、多重串流、SACK等特性來進行探討,接著提出運用在Handoff壅塞之改善,來提升Throughput傳達率及降低接收端所需要緩衝區大小Buffer Size,這些特性對無線行動裝置相當有用。SCTP通訊協定保留TCP/UDP優點並增加多重定址及多重串流等特性,我們在本論文利用SCTP通訊協定來達成同時在數條連線上傳輸目標,導入服務品質保證機制作為路徑切換判斷依據,使得換手過程可持續擁有良好傳輸品質,藉以提高傳輸量。


In recent years, wireless communication has evolved and encompasses various types of wireless technologies which differ in many aspects, leading to a heterogeneous network environment. Users can switch to different network connections through vertical handoffs. In order to improve the performance in such a heterogeneous network environment, IETF proposed the stream control transmission protocol (SCTP) in 2000.
SCTP combines the advantages of both TCP and UDP and offers features such as multi-homing, multi-streaming, and selective acknowledgment. In this thesis, we describe the basic operations of SCTP and how these features can improve throughput and reduce the receiver buffer size. Specifically, we use SCTP to achieve simultaneous transmissions of packets on multiple links and make the handoff process smooth with good transmission quality.
The network environment of this research comprises 3G/4G and Wi-Fi. The multi-homing feature of SCTP combined with dynamic address reconfiguration and expansion of functions helps mobile devices achieve seamless vertical handoffs. The Mobile Node (MN) emulates endpoint device with an iOS mobile device, and the Correspondent Node (CN) emulates endpoint device with an Android mobile device. CBR packets are sent from the MN to the CN. In addition, another mobile device transmits FTP data on the same link starting at 10 seconds, 20 seconds, and 30 seconds, respectively, for three different scenarios: (1) Web Browsing in 3G and WiFi, (2) VoIP in WiFi and LTE, and (3) Video Streaming in 3G and LTE wireless network environment. The bandwidth contention between CBR and FTP traffic causes the RTT to go up. In the proposed QoS-based path switching scheme, bandwidth, RTT,and packet loss are used as the criteria for path switching. Simulation results demonstrate that the proposed method compares favorably against other handoff schemes.


摘 要 I
Abstract II
致 謝 III
目 錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 前言 2
1.2 研究動機 2
1.3 研究目的與方法 3
1.4 論文架構 4
1.5 研究貢獻 4
第二章 文獻探討 5
2.1 iOS及Android簡介 5
2.2 SCTP串流控制傳輸協定簡介 5
2.2.1 多重串流(Multi-Streaming)12
2.2.2 多重定址(Multi-Homing)13
2.2.3 區塊綁定機制(Chunk Bundling)15
2.2.4 選擇性回應機制(SACK)16
2.2.5 Head-of-Line Blocking 18
2.2.6 路徑監測機制(Heartbeat)19
2.2.7 Mobile SCTP(mSCTP)19
2.3 長程演進網路換手機制Handoff流程 23
2.3.1 換手機制型態 24
2.3.2 換手目標基地台預測相關研究 25
2.3.3 平順換手機制(Smooth Handoff)25
2.3.4 換手機制 26
2.4 Mobile IP簡介 27
2.4.1 Mobile IPv6簡介 28
2.4.2 Mobile IP運作方式 32
2.5 蜂巢式網路(Cellular Network)34
第三章 研究方法 36
3.1 垂直換手法(Vertical Handoff)36
3.2 基於QoS路徑切換機制演算法 38
第四章 模擬結果與效能分析 44
4.1 模擬環境及參數說明 45
4.2 模擬流程 54
4.3 模擬結果及分析評估 55
第五章 結論與未來展望 63
5.1 結論 63
5.2 未來展望 63
參考文獻 64
[1] J. Postel, Transmission Control Protocol, IETF RFC 793, September 1981.
[2] J. Postel, User Datagram Protocol, IETF RFC 768, August 1980.
[3] R. Stewart, et al., “Stream Control Transmission Protocol,” RFC 2960, October 2000.
[4] M. Atiquzzaman and W. Ivancic, “Evaluation of SCTP Multistreaming over Wireless / Satellite Links,” 12th IEEE International Conference on Computer Communication and Networks, Oct. 2003.
[5] R. Stewart and P. D. Amer, “Why is SCTP needed given TCP and UDP are widely available?” http://www.isoc.org/briefings/017/index.shtml.
[6] P. T. Conrad, G.J. Heinz, A.L. Caro, P.D. Amer, and J. Fiore, “SCTP in battlefield networks,” IEEE Military Communication Conference, Vol. 1, Oct. 2001.
[7] M. H. Duke, T. R. Henderson, P. A. Spagnolo, J. H. Kim, and G. T. Michael, “Stream control transmission protocol(SCTP)performance over the land mobile satellite channel,” IEEE Military Communications Conference, Vol. 2, pp.1325-1331, Oct. 2003.
[8] S. Fu and M. Atiquzzaman, “SCTP: State of the art in research, products, and technical challenges,” IEEE Communication Magazine, Vol. 42, No. 4, pp. 64-76, April 2004.
[9] K. Sukwoo and F. Natthew, “Experimental study of the SCTP compared to TCP,” Computer Communications and Networking Project Report, Fall 2003.
[10] R. Stewart and C. Metz, “SCTP:New Transport Protocol for TCP/IP,” IEEE Internet Comp,” Vol.5, No.6, pp.64-69, Nov/Dec. 2001.
[11] 蔡尚志, “以SCTP協定於封包交換網路傳輸信號之討論與分析,” 電腦與通訊第九十七期, 12-18, 2001.
[12] C. Perkins, IP Mobility Support for IPv4, RFC 3344, August 2002.
[13] D. Johnson, C. Perkins, and J. Arkko, “Mobility support in IPv6,” RFC 3775, June 2004.
[14] C. S. Chiu and C. C. Huang, “Combined partial reuse and soft handover in OFDMA downlink transmission,” in IEEE Vehicular Technology Conference, May. 2008, pp. 1707-1711.
[15] G. Huaining, X. M. Wen, W. Zheng, Z. M. Lu, and B. Wang, “A history - based handover prediction for LTE systems,” International Symposium on Computer Network and Multimedia Technology, pp. 18-20, 2009.
[16] D. Kim, M. Sawhney, and H. Yoon, “An effective traffic management scheme using adaptive handover time in next-generation cellular networks,” Int. J. Netw. Manag., Vol. 17, pp. 139–154, 2007.
[17] 蘇允達, IPv4/IPv6 NAT 協定追蹤之設計與實作, 逢甲大學資訊工程研究所碩士論文, 2003.
[18] A. L. Caro et al., “SCTP: A proposed standard for robust internet data transport,” IEEE Comp , Vol. 36, No. 11, pp. 56-63, Nov. 2003.
[19] M. Riegel and M. Tuexen, “Mobile SCTP,” draft-riegel-tuexen-mobile-sctp-07.txt, October 2006.
[20] 3GPP, Overview of 3GPP Release 8 V0.2.3.
[21] A. Caro, P. Amer, and J. Iyengar, “Retransmission policies with transport layer multihoming,” IEEE International Conference on Networks (ICON2003) , pp. 255-260, 2003.
[22] 張瑞雄、陳俊良、陳彥文、趙涵捷、賴威光、賴溪松、陳錦洲、陳懷恩, IPv6 新世代網際網路協定暨整合技術, 台北, 旗標出版社, July 2004.
[23] A. Kelly, G. Muntean, P. Perry, and J. Murphy, “Delay-centric handover in SCTP over WLAN,” Transactions on Automatic Control and Computer Science, Vol. 49, May 2004.
[24] H. B. Yi, and C. L. Huang, “Effective path selection using SCTP for asymmetric network,” Workshop on Wireless, Ad Hoc and Sensor Networks (WASN) 2006, Taiwan , Aug. 10, 2006.
[25] S. J. Koh, H. Y. Jung, and J. H. Min, “Transport Layer Internet Mobility based on mSCTP,” The 6th International Conference on Advanced Communication Technology, Phoenix Park, Korea, pp. 329-333, Feb. 2004.
[26] K. I. Itoh, S. Watanabe, J. S. Shih, and T. Sato, “Performance of handoff algorithm based on distance and RSSI measurements,” IEEE Transactions on Vehicular Technology, Vol. 51, pp. 1460-1468, Nov. 2002.
[27] H. Zhu and K. S. Kwak, “Adaptive handoff using distance information,” IEEE Vehicular Technology Conference, Vol. 2, pp. 932-936, May2006.
[28] D. K. Panwar and L. Shyam, “Coverage analysis of handoff algorithm with adaptive hysteresis margin,” 10th International Conference on Information Technology, pp. 133-138, Dec. 2007.
[29] A. H. Zahran, B. Liang, and A. Saleh, “Signal thresholds adaptation for vertical handoff in heterogeneous wireless networks,” Mobile Networks and Applications, Springer Netherlands, Vol. 11, No. 4, pp. 625-640, August 2006.
[30] M. AlSabah, K. Bauer, and I. Goldberg, “Enhancing Tor’s performance using real-time traffic classification,” The ACM Conference on Computer and Communications Security (CCS’12), pp. 73–84, October 2012.
[31] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of available bandwidth estimation tools,” The ACM SIGCOMM Internet Measurement Conference (IMC ’03), pp. 39–44, October 2003.
[32] S. Kashihara, T. Nishiyama, K. Iida, H. Koga, Y. Kadobayashi, and S. Yamaguchi, “Path selection using active measurement in Multi-Homing wireless networks,” IEEE International Symposium on Applications and the Interne (SAINT2004), pp. 273-276, 2004.
[33] M. P. Selvi and S. Sendhilnathan, “Minimizing Handover Delay and Maximizing Throughput by Heterogeneous Handover Algorithm (HHA) in Telecommunication Networks,” Vol. 1746, No.6, pp. 1737-1746, 2017.
[34] 戴丞峰, 基於SCTP網路下之自適性負載平衡機制, 朝陽科大資訊管理研究所碩士論文, 2005.
[35] 孫正忠, 使用行動式IPv6整合網際網路和行動隨意網路, 國立交通大學電機資訊學院研究所碩士論文, 2004.
[36] 柯志亨, NS-2 教學手冊(NS-2 Learning Guide), http://hpds.ee.ncku.edu.tw/~smallko/ NS-2/ NS-2.htm
[37] 程榮祥、柯志亨、鄧德雋、丁建文, NS-2網路模擬實驗, 學貫行銷股份有限公司, 2009.
[38] P. S. Katkar and Dr. V. R. Ghorpade, “Comparative Study of Network Simulator: NS-2 and NS3,” International Journal of Advanced Research in Computer Science and Software Engineering , Vol. 6, Issue 3, March 2016, ISSN: 2277128X.
[39] M. J. Chang, Z. Abichar, and C. Y. Hsu, “WiMax. vs. LTE: Who Will Lead the the Broadband Mobile Internet?” IT Professional, 12(3):26–32, 2010.
[40] H. Jouini, M. Escheikh, K. Barkaoui and T. Ezzedine, “Mobility Load Balancing Based Adaptive Handover in Downlink LTE Self-Organizing Networks,” International Journal of Wireless & Mobile Networks, Vol. 8, 2016.
[41] G. N. Vivekananda and P. Chenna Reddy, “Performance evaluation of TCP, UDP, and SCTP in MANETS,” ARPN Journal of Engineering and Applied Sciences, Vol.13, No.9, pp. 3087-3092, 2018.
[42] B. R. Dawadi, S. R. Joshi and A. R. Khanal, “Service Provider IPv4 to IPv6 Network Migration Strategies,” Emerg. Trends Comput. Inf. Sci., Vol. 6, no. 10, pp. 565–572, 2015.
[43] R. Rajamani, S. Kumar and N. Gupta, SCTP versus TCP: Comparing the Performance of Transport Protocols for Web Traffic, Tech report: University of Wisconsin-Madison, July 22, 2002.
[44] R. K. Goyal, and S. Kaushal,“A survey of msctp for transport layer mobility management,”Journal of Advances in. Information Technology, Vol. 4(1), 20-27, 2013.
[45] P. Yadav and R. Agrawal, “A Multi-homing Based Framework Against Denial of Service Open Threat Signaling in Healthcare Environment,” International Journal of Control and Automation, pp. 1-18, 2018.
[46] B. Hazarika and S. Medhi, “Survey of real-time security mechanisms in network forensics,” International Journal of Computer Applications, Vol. 151(2), 2016.
[47] 吳俊良, “IEEE 802.11s無線網狀網路的位置管理與流暢換手機制,” 國立交通大學網路工程研究所碩士論文, 2009.
[48] I. A. Halepoto, M. S. Memon, N. H. Phulpoto, U. Rajput and M. Y. Junejo, “On the use of Multipath Transmission using SCTP,” International Journal of Computer Science and Network Security, 18(4), pp. 58-62, 2018.
[49] K. J. Grinnem, T. Andersson and A. Brunstrom, “Performance Benefits of Avoiding Head-of-Line Blocking in SCTP,” Proceedings of the IEEE ICAS/ICNS, pp. 44-51, October 2005.
[50] 蔣承翰, SCTP上的延遲取向無縫式轉換之研究, 國立交通大學資訊工程學系碩士論文, 2007.
[51] 曾國峰, 量測導向的SCTP 路徑選擇策略與效能評估, 靜宜大學資訊管理研究所碩士論文, 2005.
[52] O. Antonova, “Introduction and Comparison of SCTP, TCP-MH, DCCP protocols,” Seminar on Internetworking, Sjökulla, April 2004.
[53] A. Kaul, L. Xue, K. Obraczka, M. Santos, and T. Turlett, “Handover and Load Balancing for Distributed Network Control: Applications in ITS Message Dissemination,” Proceedings of the 27th International Conference on Computer Communications and Networks (ICCCN18), July 2018.
[54] W. Ahmed and M. Jashim, An SCTP Based Decentralized Mobility Framework, Masters Thesis, Department of Electrical Engineering, Blekinge Institue of Technlogy, Karlskrona, Sweden, July 2010.
[55] I. Rüngeler, SCTP: Evaluating, Improving and Extending the Protocol for Broader Deployment, PhD Dissertation, Institute for Computer Science and Business Information Systems, University of Duisburg-Essen, December 2009.
[56] 林子勳, 藉由Freeze-TCP機制降低換手時無法到達行動節點之封包傳送量, 中華大學資訊工程學系碩士論文, 2010.
[57] C. Perkins, “IP Encapsulation within IP,” RFC 2003, October 1996.
[58] 李冠德, 改善CoAP 傳輸之壅塞控制機制, 國立臺北科技大學資訊工程學系碩士論文, 2017.
[59] I. Aydin, W. Seok and C. C. Shen, Cellular SCTP: A TransportLayer Approach to Internet Mobility. IEEE proceedings the 12 th International Conference on Computer Communications and Networks, ICCCN 2003, 2002.
[60] M. Polese, F. Chiariotti, E. Bonetto, F. Rigotto, A. Zanella, and M. Zorzi, “A Survey on Recent Advances in Transport Layer Protocols,” submitted to IEEE Communication Surveys and Tutorials, 2019.
電子全文 電子全文(網際網路公開日期:20240827)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔