跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/16 09:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧亭嬑
研究生(外文):LU, TING-YI
論文名稱:於水相中有效利用分子篩捕獲二氧化碳,成功進行碘化銅催化羧化反應探討
論文名稱(外文):Molecular Sieves as an Efficient Promoting Medium for Capture of CO2 in the Copper-Iodine Catalyzed Carboxylation in H2O
指導教授:陳秀慧陳秀慧引用關係
指導教授(外文):Chen, Hsiu-Hui
口試委員:俞仁渭王建隆陳秀慧
口試日期:2019-07-04
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:67
中文關鍵詞:二氧化碳碘化銅分子篩水相
外文關鍵詞:Copper-IodineCO2Molecular SievesH2O
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文中添加4 Å分子篩(molecular sieves,MS)於水相的環境中以苯乙炔(phenylacetylene)、苯甲醛(benzaldehyde)、苯胺(benzylamine)在一大氣壓下與二氧化碳(CO2)四種化合物進行一步(one-pot)的羧化環化反應(carboxylative cyclization),並以相對便宜的碘化銅(copper iodide,CuI)當作催化劑,成功合成出噁唑烷酮(oxazolidinones)衍生物,產率可達95%。與無分子篩實驗比較,證明4 Å分子篩可以有效提高羧化反應(carboxylation),並獲得更高產率的產物。
此化合物的純度及結構鑑定皆透過核磁共振光譜儀(nuclear magnetic resonance spectrometer,NMR)及質譜儀(Mass Spectrometer,MS)確認。

In this paper, the 4 Å molecular sieves (MS) were added in (H2O) to improve CO2 capture and facilitate the carboxylation with phenylacetylene, benzaldehyde, benzylamine and carbon dioxide (CO2) at atmospheric pressure, which to give a one-step carboxylative cyclization through a copper (I)-catalyzed and oxazolidinones were successfully synthesized. It is proved that the 4 Å molecular sieve can effectively increase the carboxylation and obtain a higher yield of the product about 95%.
The synthetic yield and structure of this compound were confirmed by nuclear magnetic resonance spectrometer (NMR) and Mass Spectrometer (MS).

目錄
中文摘要 I
Abstract II
圖目錄 V
表目錄 VI
附圖目錄 VII
第一章 緒論 1
1-1 研究背景 1
1-2 文獻探討 3
1-3 研究動機 6
第二章 實驗與合成 7
2-1 實驗前處理 7
2-2 實驗藥品 7
2-3 實驗儀器 8
2-4 實驗步驟 11
第三章 結果與討論 13
3-1 結果討論 13
3-2 光譜數據分析(由國立高雄師範大學,陳秀慧博士實驗室,陳美蓉同學提供。) 21
第四章 結論 26
參考資料 27
附圖-光譜資訊(由國立高雄師範大學,陳秀慧博士實驗室,陳美蓉同學提供。) 32
A. 1H and 13C NMR spectra for compounds 4 32
B. IR data for compounds 4 50
C. MS data for compounds 4 59

圖目錄
圖1、2-噁唑烷酮 2
圖2、炔丙胺與二氧化碳的2-oxazolidinones衍生物反應 3
圖3、Li研究團隊所提出的一步反應流程 5
圖4、A3偶聯反應的合成途徑 5
圖5、本論文的合成規劃 6
圖6、1H-NMR內標法的計算過程 12

表目錄
表1、改變催化劑的量和溫度來測試最佳產率的反應結果 13
表2、改變起始物的當量來測試最佳產率的反應結果 14
表3、使用不同溶劑來測試產率的反應結果 15
表4、不同孔徑的分子篩在不同溶劑中的反應結果 16
表5、使用碘化銅催化的A3偶聯反應在水中的反應結果 18
表6、起始物變換不同官能基的檢測結果 19

附圖目錄
附圖1、The 1H NMR spectrum of compound 4a. 32
附圖2、The 13C NMR spectrum of compound 4a. 33
附圖3、The 1H NMR spectrum of compound 4b. 34
附圖4、The 13C NMR spectrum of compound 4b. 35
附圖5、The 1H NMR spectrum of compound 4c. 36
附圖6、The 13C NMR spectrum of compound 4c. 37
附圖7、The 1H NMR spectrum of compound 4d. 38
附圖8、The 13C NMR spectrum of compound 4d. 39
附圖9、The 1H NMR spectrum of compound 4e. 40
附圖10、The 13C NMR spectrum of compound 4e 41
附圖11、The 1H NMR spectrum of compound 4f. 42
附圖12、The 13C NMR spectrum of compound 4f. 43
附圖13、The 1H NMR spectrum of compound 4g. 44
附圖14、The 13C NMR spectrum of compound 4g. 45
附圖15、The 1H NMR spectrum of compound 4h. 46
附圖16、The 13C NMR spectrum of compound 4h. 47
附圖17、The 1H NMR spectrum of compound 4i 48
附圖18、The 13C NMR spectrum of compound 4i 49
附圖19、The IR spectrum of compound 4a 50
附圖20、The IR spectrum of compound 4b 51
附圖21、The IR spectrum of compound 4c 52
附圖22、The IR spectrum of compound 4d 53
附圖23、The IR spectrum of compound 4e 54
附圖24、The IR spectrum of compound 4f 55
附圖25、The IR spectrum of compound 4g 56
附圖26、The IR spectrum of compound 4h 57
附圖27、The IR spectrum of compound 4i 58
附圖28、The Mass spectrum of compound 4a 59
附圖29、The Mass spectrum of compound 4b 60
附圖30、The Mass spectrum of compound 4c 61
附圖31、The Mass spectrum of compound 4d 62
附圖32、The Mass spectrum of compound 4e 63
附圖33、The Mass spectrum of compound 4f 64
附圖34、The Mass spectrum of compound 4g 65
附圖35、The Mass spectrum of compound 4h 66
附圖36、The Mass spectrum of compound 4i 67



參考資料
1. (a) K. Huang, C. L. Sun, Z. J. Shi, Chem. Soc. Rev., 2011, 40, 2435; (b) S. N. Riduan, Y. G. Zhang, Dalton T., 2010, 39, 3347; (c) T. Sakakura, J. C. Sakakura, H. Yasuda, Chem. Rev., 2007, 107, 2365.
2. (a) T. Aida and S. Inoue, Acc. Chem. Res., 1996, 29, 39-48; (b) M. Aresta, A. Dibenedetto and I. Tommasi, Energy Fuels, 2001, 15, 269-273; (c) P. Tundo and M. Selva, Acc. Chem. Res., 2002, 35, 706−716; (d) G. A. Olah, Angew. Chem., 2005, 117, 2692−2696; Angew. Chem., Int. Ed., 2005, 44, 2636−2639; (e) R. Zevenhoven, S. Eloneva and S. Teir, Catal. Today, 2006, 115, 73−79; (f) S. N. Riduan and Y. Zhang, Dalton Trans, 2010, 39, 3347−3357.
3. (a) A. Buchard, F. Jutz, M. R. Kember, A. J. P. White, H. S. Rzepa and C. K. Williams, Macromolecules, 2012, 45, 6781−6795; (b) E. H. Lee, J. Y. Ahn, M. M. Dharman, D. W. Park, S. W. Park and I. Kim, Catal. Today, 2008, 131, 130−134; (c) Y. Zhao, J. Chen and J. Zhang, J. Nat. Gas Chem., 2007, 16, 389−392; (d) Q. Cheng and S. Zhong, Chin. J. Catal., 2003, 24, 558−562.
4. (a) Carbon Dioxide as Chemical Feedstock, ed. M. Aresta, Wiley-VCH: Weinheim, 2010; (b) T. Sakakura, J.-C. Choi and H. Yasuda, Chem. Rev., 2007, 107, 2365–2387.
5. F. Dong, H. Lou, M. Goto and T. Hirose, Sep. Purif. Technol., 1990, 15, 31-40.
6. (a) B. S. Zheng, J. F. Bai, J. G. Duan, L. Wojtas and M. J. Zaworotko, J. Am. Chem. Soc., 2011, 133, 748−751; (b) R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O’Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131, 3875−3877; (c) S. T. Yang, J. Y. Kim, J. Kim, W. S. Ahn, Fuel, 2012, 97, 435−442; (d) J. McEwen, J. D. Hayman and A. O. Yazaydin, Chem. Phys., 2013, 412, 72−76; (e) T. D. Pham, Q. L. Liu and R. F. Lobo, Langmuir, 2013, 29, 832−839.
7. (a) R. Vaidhyanathan, S. S. Iremonger, K. W. Dawson and G. K. H. Shimizu, Chem. Commun., 2009, 35, 5230−5232; (b) S. Couck, J. F. M. Denayer, G. V. Baron, T. Rémy, J. Gascon and F. Kapteijn, J. Am. Chem. Soc., 2009, 131, 6326−6327; (c) J. H. An, S. J. Geib and N. L. Rosi, J. Am. Chem. Soc., 2010, 132, 38−39; (d) X. L. Si, C. L. Jiao, F. Li, J. Zhang, S. Wang, S. Liu, Z. B. Li, L. X. Sun, F. Xu, Z. Gabelica and C. Schick, Energy Environ. Sci., 2011, 4, 4522−4527.
8. (a) J. R. Li, R. J. Kuppler and H. C. Zhou, Chem. Soc. Rev., 2009, 38, 1477−1504; (b) T. Panda, P. Pachfule, Y. Chen, J. Jiang and R. Banerjee, Chem. Commun., 2011, 47, 2011−2013; (c) J. Weber, N. Y. Du and M. D. Guiver, Macromolecules, 2011, 44, 1763−1767; (d) B. Arstad, H. Fjellvag, K. O. Kongshaug, O. Swang and R. Blom, Adsorption, 2008, 14, 755−762; (e) G. Li and Z. Wang, Macromolecules, 2013, 46, 3058-3066.
9. R. V. Siriwardane, M.-S. Shen, E. P. Fisher, J. A. Poston, Energy & Fuels, 2001, 15, 279-284.
10. (a) M. R. Barbachyn and C. W. Ford, Angew. Chem., Int. Ed., 2003, 42, 2010−2023; (b) T. A. Mukhtar and G. D. Wright, Chem. Rev., 2005, 105, 529−542.
11. S. Kikuchi, S. Yoshida, Y. Sugawara, W. Yamada, H.-M. Cheng, K. Fukui, K. Sekine, I. Iwakura, T. Ikeno, T. Yamada, Bull. Chem. Soc. Jpn., 2011, 84, 698−717.
12. M. Yoshida, T. Mizuguchi, K. Shishido, Chem. Eur. J., 2012, 18, 15578−15581.
13. S. Yoshida, K. Fukui, S. Kikuchi, T. Yamada, Chem. Lett., 2009, 38, 786−787.
14. Q. W. Song, Z. H. Zhou, H. Yin, L. N. He, ChemSusChem., 2015, 8, 3967−72.
15. A. Bacchi, G. P. Chiusoli, M. Costa, B. Gabriele, C. Righi, G. Salerno, Chem. Commun., 1997, 13, 1209−1210.
16. M. Shi, Y. M. Shen, J. Org. Chem., 2002, 67, 16−21.
17. T. Mitsudo, Y. Hori, Y. Yamakawa, Y. Watanabe, Tetrahedron Lett., 1987, 28, 4417−4418.
18. S. Hase, Y. Kayaki, T. Ikariya, Organometallics., 2013, 32, 5285−5288.
19. K. Fujita, K. Inoue, J. Sato, T. Tsuchimoto, H. Yasuda, Tetrahedron., 2016, 72, 1205−1212.
20. K. Fujita, J. Sato, K. Inoue, T. Tsuchimoto, H. Yasuda, Tetrahedron Lett., 2014, 55, 3013−3016.
21. T. Mitsudo, Y. Hori, Y. Yamakawa and Y. Watanabe, Tetrahedron Lett., 1987, 28, 4417−4418.
22. (a) H. F. Jiang, J. W. Zhao, Tetrahedron Lett., 2009, 50, 60; (b) H. F. Jiang, J. W. Zhao, A. Z. Wang, Synthesis., 2008, 763.
23. (a) C. R. Qi, J. W. Ye, W. Zeng, H. F. Jiang, Adv. Synth. Catal., 2010, 325, 1925; (b) H. F. Jiang, J. W. Ye, C. R. Qi, L. B. Huang, Tetrahedron Lett., 2010, 51, 928.
24. (a) C. R. Qi, H. F. Jiang, Z. Y. Wang, B. Zou, S. R. Yang, Synlett., 2007, 255; (b) C. R. Qi, H. F. Jiang, Z. Y. Wang, B. Zou, Chin. J. Chem., 2007, 1051, 25; (c) C. R. Qi, H. F. Jiang, H. L. Liu, S. R. Yang, B. Zou, Chem. J. Chin. Univ., 2007, 28, 1084.
25. H. F. Jiang, A. Z. Wang, H. L. Liu, C. R. Qi, Eur. J. Org. Chem., 2008, 2309.
26. (a) C. R. Qi, H. F. Jiang, Green Chem., 2007, 9, 1284; (b) C. R. Qi, L. B. Huang, H. F. Jiang, Synthesis., 2010, 1433.
27. (a) Z. Z. Yang, Y. N. Li, Y. Y. Wei, L. N. He, Green Chem., 2011, 13, 2351; (b) F. Fontana, C. C. Chen, V. K. Aggarwal, Org. Lett., 2011, 13, 3454; (c) H. Zhou, Y. M. Wang, W. Z. Zhang, J. P. Qu, X. B. Lu, Green Chem., 2011, 13, 644.
28. (a) R. Maggi, C. Bertolotti, E. Orlandini, C. Oro, G. Sartori, M. Selva, Tetrahedron Lett., 2007, 48, 2131; (b) Y. Kayaki, M. Yamamoto, T. Suzuki, T. Ikariya, Green Chem., 2006, 8, 1019; (c) M. Feroci, M. Orsini, G. Sotgiu, L. Rossi, A. Inesi, J. Org. Chem., 2005, 70, 7795; (d) M. Shi, Y. M. Shen, J. Org. Chem., 2002, 67, 16.
29. (a) J. Fournier, C. Bruneau, P. H. Dixneuf, Tetrahedron Lett., 1990, 31, 1721; (b) Y. L. Gu, Q. H. Zhang, Z. Y. Duan, J. Zhang, S. G. Zhang, Y. Q. Deng, J. Org. Chem., 2005, 70, 7376; (c) Q. H. Zhang, F. Shi, Y. L. Gu, J. Yang, Y. Q. Deng, Tetrahedron Lett., 2005, 46, 5907.
30. (a) B. Yu, B.-B. Cheng, W.-Q. Liu, W. Li, S.-S. Wang, J. Cao and C.-W. Hu, Adv. Synth. Catal., 2016, 358, 90−97; (b) Y. Zhao, J. Qiu, L. Tian, Z. Li, M. Fan and J. Wang, ACS Sustainable Chem. Eng., 2016, 4, 5553−5560; (c) A. Bacchi, G. P. Chiusoli, M. Costa, B. Gabriele, C. Righi and G. Salerno, Chem. Commun., 1997, 13, 1209−1210; (d) M. Shi and Y.-M. Shen, J. Org. Chem. 2002, 67, 16−21; (e) P. García-Dominguez, L. Fehr, G. Rusconi and C. Nevado, Chem. Sci., 2016, 7, 3914−3918; (f) P. Brunel, J. Monot, C. E. Kefalidis, L. Maron, B. Martin-Vaca, D. Bourissou, ACS Catal., 2017, 7, 2652−2660; (g) S. Hase, Y. Kayaki and T. Ikariya, Organometallics, 2013, 32, 5285−5288; (h) S. Hase, Y. Kayaki and T. Ikariya, ACS Catal., 2015, 5, 5135−5140; (i) R. Yuan and Z. Lin, ACS Catal., 2015, 5, 2866−2872; (j) X. Liu, M.-Y. Wang, S.-Y. Wang, Q. Wang and L.-N. He, ChemSusChem, 2017, 10, 1210-1216.
31. (a) K. Sekine and T. Yamada, Chem. Soc. Rev., 2016, 45, 4524−4532; (b) S. Yoshida, K. Fukui, S. Kikuchi and T. Yamada, Chem. Lett., 2009, 38, 786−787; (c) K. Sekine, R. Kobayashi and T. Yamada, Chem. Lett., 2015, 44, 1407−1409; (d) M. Yoshida, T. Mizuguchi and K. Shishido, Chem. Eur. J., 2012, 18, 15578−15581; (e) R. Yuan, B. Wei, G. Fu, J. Org. Chem., 2017, 82, 3639−3647.
32. (a) Z. Zhang, H. Gao, H. Wu, Y. Qian, L. Chen and J. Chen, ACS Appl. Nano Mater., 2018, 1, 6463-6476; (b) G. Zhang, H. Yang and H. Fei, ACS Catal., 2018, 8, 2519-2525.
33. (a) P. G. Jessop, Y. Hsiao, T. Ikariya, R. Noyori, J. Am. Chem. Soc., 1994, 116, 8851-8852; (b) Y. Kayaki, M. Yamamoto, T. Suzuki and T. Ikariya, Green Chem., 2006, 8, 1019−1021.
34. (a) J. Hu, J. Ma, Q. Zhu, Z. Zhang, C. Wu and B. Han, Angew. Chem., Int. Ed., 2015, 54, 5399−5403; (b) J. Hu, J. Ma, Z. Zhang, Q. Zhu, H. Zhou, W. Lu and B. Han, Green Chem., 2015, 17, 1219-1225.
35. (a) W.-J. Yoo and C.-J. Li, Adv. Synth. Catal., 2008, 350, 1503 -1506; (b) C.-J. Li, Acc. Chem. Res., 2010, 43, 581-590; (c) D. Teffahi, S. Hocine, C.-L. Li, Letters in Organic Chemistry, 2012, 9, 585-593.
36. (a) G. Hattori, K. Sakata, H. Matsuzawa, Y. Tanabe, Y. Miyake and Y. Nishibayashi, J. Am. Chem. Soc., 2010, 132, 10592-10608; (b) T. Ishida, R. Kobayashi and T. Yamada, Org. Lett., 2014, 16, 2430-2433; (c) R. Yuan, S. Xu and G. Fu, Org. Chem., 2018, 83, 11896-11904.
37. J. M. V. Nabais, P. J. M. Carrott, M. M. L. R. Carrott; A. M. Padre-Eterno, J. A. Menéndez, A. Dominguez and A. L. Ortiz, Carbon, 2006, 44, 1158-1165.
38. (a) D. Cazola-Amorós, J. Alcaňiz-Monge, M. A. de la Casa-Lillo and A. Linares-Solano, Langmuir, 1998, 14, 4589-4596; (b) D. Liu, H. Yi, X. Tang, S. Zhao, Z. Wang, F. Gao, Q. Li and B. Zhao, J. Chem. Eng. Data, 2016, 61, 2197-2201; (c) K. Morishige, J. Phys. Chem. C, 2011, 115, 9713-9718; (d) A. Silvestre-Albero, A. Wahby, J. Silvestre-Albero, F. Rodríguez-Reinoso and W. Betz, Ind. Eng. Chem. Res., 2009, 48, 7125-7131; (e) I. P. P. Cansado, M. R. Carrott and P. J. M. Carrott, Energy & Fuels., 2006, 20, 766-770.
39. Y. Zhao., J. Qiu., L. Tian., Z. Li., M. Fan., and J. Wang. Sustainable Chem. Eng., 2016, 4, 5553−5560.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊