跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 19:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭滋含
研究生(外文):HSIAO, TZU-HAN
論文名稱:以情境式實作評量探討高一學生生物科探究與實作之表現
論文名稱(外文):Performance of tenth grade students in biological inquiry and practice by situated assessment
指導教授:廖麗貞廖麗貞引用關係洪振方洪振方引用關係
指導教授(外文):LIAO, LI-JENHUNG, JENG-FUNG
口試委員:林佳慶林曉雯廖麗貞洪振方
口試委員(外文):LIN,CHIA-CHINGLIN,HSIAO-WENLIAO, LI-JENHUNG, JENG-FUNG
口試日期:2019-07-15
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:科學教育暨環境教育研究所
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:97
中文關鍵詞:探究與實作能力實作評量
外文關鍵詞:inquiry and practicesituated assessment
相關次數:
  • 被引用被引用:3
  • 點閱點閱:478
  • 評分評分:
  • 下載下載:121
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要

  本研究旨在發展一份探究與實作問卷,並用來探討高一學生探究與實作能力表現。本研究之研究工具取自2017年高雄市自然學科實驗競賽生物科實作考題,並以高雄市國三學生共兩百一十六人進行分組作答結果,建立預設答案及評分標準。接著以便利取樣選取臺灣南部高雄市三所不同入學積分普通高級中學的高一學生各一個班,學生共88人進行實作評量的調查,評分者一致性信度為0.9。最後利用測驗所蒐集之資料進行量化資料的敘述性統計、單因子變異數分析及皮爾森積差相關分析,進一步提供質性內容補充說明量化資料。經分析後,獲致以下結論:
一、高一學生之探究與實作能力在觀察及分類之得分百分率有達及格標準60分,但提出問題、提出假說、設計實驗、結果及證據、討論並提出結論、推理或預測、評估實驗的結果及總能力之得分百分率皆未達及格標準;高一學生在觀察向度覺得最容易且最有信心,而在推理或預測向度覺得最困難且最沒信心。
二、不同入學積分的學生在探究與實作能力表現,部分向度有差異,高入學積分學生在分類、提出假說及總能力表現較中入學積分學生好而低入學積分學生在分類表現較中入學積分學生好;中入學積分學生在觀察向度比高入學積分的學生更有信心也覺得更為容易。
三、高一學生在探究與實作的表現中,所有向度的題目困難度與信心度呈現高度負相關。僅有在討論並提出結論此向度中探究與實作能力與困難度呈現高度負相關而與信心度呈現正相關。

Abstract

The purpose of the research is to develop an inquiry and practice questionnaire, and used to explore the performance of tenth grade high school students in inquiry and practice. The research tools of this study were taken from biology practical exam of Kaohsiung Natural Science Experiment Competition in 2017. A total of 216 students from Kaohsiung were assigned to answer questions and to default answers and scoring criteria. Through convenience sampling, 88 tenth grade high school students of different entrance examination rank are selected to conduct a survey of actual assessment, with an internal consistency reliability of 0.9. Finally, using the data collected by the test, the descriptive statistics, the Analysis of Variance and the Pearson Correlation were used. Furthermore, to provide qualitative content to supplement the quantitative information. After analysis, the following conclusions were reached:
First, tenth grade high school students are relatively better at the observed and classification skill, and fail of questioning, hypothesis, design experiment, result and evidence, discussion and conclusion, reasoning or prediction, assess the results of the experiment, and all the skill in inquiry and practice. Students feel the easiest and most confident in observed; and opposite of reasoning or prediction.
Second, there are some difference in tenth grade high school students of different entrance examination rank. The students of high entrance examination rank are better than the students of middle entrance examination rank in classification, hypothesis, and all the skill in inquiry and practice. The students of low entrance examination rank are better than the students of middle entrance examination rank in classification skill. The students of middle entrance examination rank feel easier and more confident than the students of high entrance examination rank.
Third, the difficulty and the confidence are highly negatively correlated in all the skill. The discussion and conclusion skill and the difficulty are highly negatively correlated. The discussion and conclusion skill and the confidence are positively correlated.


目錄
目錄 I
表目錄 VII
圖目錄 IX
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與研究問題 5
第三節 名詞釋義 6
第四節 研究範圍與限制 7
第貳章 文獻探討 9
第一節 素養導向的科學教育 9
第二節 探究與實作的內涵 13
第三節 探究與實作的評量 17
第四節 探究與實作的相關研究 19
第三章 研究方法 23
第一節 研究設計與架構 23
第二節 研究對象 24
第三節 研究工具 25
第四節 研究流程 35
第五節 資料蒐集與分析 37
第四章 研究結果與討論 39
第一節 高一學生探究與實作能力、困難度及信心度表現 39
第二節 不同入學積分的高一學生探究與實作能力、困難度及信心度表現 51
第三節 高一學生探究與實作能力、困難度及信心度表現相關性 77
第五章 結論與建議 79
第一節 結論 79
第二節 建議 81
參考文獻 83
中文文獻 83
英文文獻 85
附錄 91
附錄一 探究與實作能力測驗問卷──以蘋果酵素為例(題目卷) 91
附錄二 探究與實作能力測驗問卷──以蘋果酵素為例(答案卷) 93


表目錄
表3- 1 觀察向度評分標準 27
表3- 2 提出問題向度評分標準 28
表3- 3 分類向度評分標準 28
表3- 4 提出假說向度評分標準 29
表3- 5 設計實驗向度評分標準 30
表3- 6 結果及證據向度評分標準 31
表3- 7 討論並提出結論向度評分標準 32
表3- 8 推理或預測向度評分標準 33
表3- 9 評估實驗的結果向度評分標準 34
表3- 10 資料收集表 37
表4- 1 高一學生探究與實作能力得分敘述統計 40
表4- 2 高入學積分學生探究與實作能力得分敘述統計 41
表4- 3 中入學積分學生探究與實作能力得分敘述統計 42
表4- 4 低入學積分學生探究與實作能力得分敘述統計 42
表4- 5 高一學生探究與實作能力困難度得分敘述統計 44
表4- 6 高入學積分學生探究與實作能力困難度得分敘述統計 45
表4- 7 中入學積分學生探究與實作能力困難度得分敘述統計 45
表4- 8 低入學積分學生探究與實作能力困難度得分敘述統計 46
表4- 9 高一學生探究與實作能力信心度得分敘述統計 48
表4- 10 高入學積分學生探究與實作能力信心度得分敘述統計 48
表4- 11 中入學積分學生探究與實作能力信心度得分敘述統計 49
表4- 12 低入學積分學生探究與實作能力信心度得分敘述統計 49
表4- 13 不同入學積分高一學生之探究與實作總表現差異 52
表4- 14 不同入學積分高一學生之觀察表現差異 54
表4- 15 不同入學積分高一學生之提出問題表現差異 56
表4- 16 不同入學積分高一學生之分類表現差異 59
表4- 17 不同入學積分高一學生之提出假說表現差異 61
表4- 18 不同入學積分高一學生之設計實驗表現差異 64
表4- 19 不同入學積分高一學生之結果及證據表現差異 67
表4- 20 不同入學積分高一學生之討論並提出結論表現差異 70
表4- 21 不同入學積分高一學生之推理或預測表現差異 72
表4- 22 不同入學積分高一學生之評估實驗的結果表現差異 74
表4- 23 高一學生探究與實作表現之能力、困難點及信心度相關比較 77


圖目錄
圖1- 1 十二年國民基本教育總綱核心素養內涵 2
圖2- 1 Gräber(2001)科學素養涵蓋模型 9
圖2- 2 陳文典(2000)實作評量的發展 18
圖3- 1 不同入學積分高一學生之探究與實作表現研究架構 23
圖3- 2 「探究與實作能力測驗問卷──以蘋果酵素為例」問卷內容說明 26
圖3- 3 觀察向度題目 27
圖3- 4 提出問題向度題目 27
圖3- 5 分類向度題目 28
圖3- 6 提出假說向度題目 29
圖3- 7 設計實驗向度題目 30
圖3- 8 結果及證據向度題目 31
圖3- 9 討論並提出結論向度題目 32
圖3- 10 推理或預測向度題目 33
圖3- 11 評估實驗的結果向度題目 34
圖3- 12 不同入學積分高一學生之探究與實作表現研究流程 36
圖4- 1 不同入學積分高一學生探究與實作能力表現 43
圖4- 2 不同入學積分高一學生困難度表現 47
圖4- 3 不同入學積分高一學生信心度表現 50
圖4- 4不同入學積分學生在探究與實作總表現得分百分比 53
圖4- 5不同入學積分學生在觀察向度表現得分百分比 56
圖4- 6不同入學積分學生在觀察向度表現得分百分比 58
圖4- 7不同入學積分學生在分類向度表現得分百分比 60
圖4- 8不同入學積分學生在提出假說向度表現得分百分比 63
圖4- 9不同入學積分學生在設計實驗向度表現得分百分比 65
圖4- 10不同入學積分學生在結果及證據向度表現得分百分比 68
圖4- 11不同入學積分學生在討論並提出結論向度表現得分百分比 71
圖4- 12不同入學積分學生在推理或預測向度表現得分百分比 73
圖4- 13不同入學積分學生在評估實驗的結果向度表現得分百分比 75
參考文獻
中文文獻
王美芬、熊召弟(2005)。國小階段自然與生活科技領域教材教法。臺北市:心理出版。
王靜如、周金燕、蔡瑞芬(2006)。國小教師科學教學基準系列報導(二)-科學本質與科學探究。屏東教大科學教育,23,3-17。
白佩宜、許瑛玿(2011)。探討不同探究式教學法對高一生科學探究能力與學習環境觀感之影響。課程與教學,14(3),123-156。
何宗穎、王敏男、謝佩妤、郭幸宜、趙大衛、黃台珠(2013)。大學普通生物學實驗課程應用探究鷹架自我評估策略對學生探究能力表現之影響。科學教育學刊,21(4),401-429。
李坤崇(2006)。教學評量。台北市:心理出版。
吳坤璋、吳裕益、黃台珠(2005)。科學探究能力測驗的編製與信、效度考驗。測驗學刊,52(2),119-148。
林小慧、吳心楷(2019)。科學探究能力評量之標準設定與其效度檢核。教育心理學報,50(3),473-502。
林永豐(2012)。教育大辭書-評分指標。取自http://terms.naer.edu.tw/detail/1453911/?index=16
邱美虹(2016)。科學教育之發展與反思─從萌芽期、蓬勃期、挑戰期談起。科學研習,55-11,8-16。
邱美虹(2018)。以科學素養為導向的新課綱-從社會性科學議題融入課程談起。臺灣教育評論月刊,7(10),1-7。
邱皓政(2010)。量化研究與統計分析:SPSS/PASW 資料分析範例解析(第五版)。台北:五南。
洪振方(2003)。探究式教學的歷史回顧與創造性探究模式之初探。高雄師大學報,15,641-662。
洪振方(2010)。思考導向的探究式學習對國二學生科學探究能力的影響。科學教育學刊,18(5),389-415。
教育部(2014)。十二年國民基本教育課程綱要總綱。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/87/pta_18543_581357_62438.pdf
教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校-自然科學領域。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/63/pta_18538_240851_60502.pdf
彭森明(1996)。實作評量理論與實際。教育資料與研究,9,44-48。
孫維新(2013)。2012公民素養大未來─科學素養,創新的原動力。科學人雜誌,132,取自http://sa.ylib.com/Catalog.aspx?id=158。
陳文典(2000)。實作評量的理念與實施。科學教育月刊,231,64-66。
陳政帆(2006)。我國八年級學生在TIMSS 2003 中之科學自信心、價值觀分析。科學教育月刊,291,2-10。
陳美智、洪振方(2018)。高一學生科學探究能力對科學論證能力預測效果之研究:以科學證據概念為中介變項。高雄師大學報,45,43-84。
陳琦媛(2017)。運用 Rubrics 評量核心素養。臺灣教育評論月刊,6(3),87-90。
陳家騏(2017)。探究與實作初探-以菜瓜布海綿的最大靜摩擦力測量為何。物理教育學刊,18(1),51-63。
陳學淵、王國華(2005)。國中教師發展實作評量之探討-以自然與生活科技領域教師為例。科學教育,14,165-180。
陳毓凱、洪振方(2007)。兩種探究取向教學模式之分析與比較。科學教育月刊,305,4-19。
張宇樑(2011)。國小五年級學生數學自我效能感之調查研究。科學教育學刊,19(6),507-530。
張珮珊、賴吉永、溫媺純(2017)。科學探究與實作課程的發展、實施與評量:以實驗室中的科學論證為核心之研究。科學教育學刊,25(4),355-389。
張堯婷、汪殿杰、吳致娟、黃鈴惠(2017)。108課綱之系統思考與問題解決核心素養融入於探究實作及創客教育活動。中等教育,68(4),141-151。
張惠博、黃文吟(2000)。科學學習的評量理念。科學教育月刊,231,49-57。
黃玉枝(2013)。以動手做科學促進身心障礙學生對科學學習的興趣。南屏特殊教育,4,23-36。
詹惠雪、陳美如(2018)。自然科學素養導向課程設計與實踐-以國中理化能源主題為例。中等教育,69(4),90-104。
潘裕豐、 吳清麟(2018)。數理資優鑑定實作評量之試題研發暨效度評估。測驗學刊,56(3),241-256。
盧雪梅(1998),實作評量的應許、難題和挑戰。取自http://mail.mcjh.kl.edu.tw/~jcchen/103nature/10.doc
蕭儒棠(2014)物理辯論競賽之學生科學探究活動評量探析。物理教育學刊,15(2),107-118。


英文文獻
American Association for the Advancement of Science. (1994). Benchmarks for Science Literacy. Oxford University Press.
Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1-12.
Andrade, H. G. (2005). Teaching with rubrics: The good, the bad, and the ugly. College Teaching, 53(1), 27-31.
Ajewole, G. A. (1991). Effects of discovery and expository instructional methods on the attitude of students to biology. Journal of Research in Science Teaching, 28(5), 401-409.
Bandura, A. (2000). Self-efficacy: The exercise of control. New York: Freeman.
Bergin, D. A. (1999). Influences on classroom interest. Educational Psychologist, 34(2), 87-98.
Blosser, P. E. (1983). The Role of the Laboratory in Science Teaching. School Science and Mathematics, 83(2), 165-69.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-42.
Chang, C. Y., & Mao, S. L. (1999). Comparison of Taiwan science students' outcomes with inquiry-group versus traditional instruction. The Journal of Educational Research, 92(6), 340-346.
Chen, C. H., & Chen, C. Y. (2012). Instructional approaches on science performance, attitude and inquiry ability in a computer-supported collaborative learning environment. Turkish Online Journal of Educational Technology-TOJET, 11(1), 113-122.
Dewey, J. (1910). Science as subject-matter and as method. Science, 31, 121–127.
Dewey, J. (1923). Democracy and education: An introduction to the philosophy of education. Macmillan.
Driver, R., Asoko, H., Leach, J., Scott, P., & Mortimer, E. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5-12.
Edelson, D. C. (1998). Realising authentic science learning through the adaptation of scientific practice. International Handbook of Science Education, 1, 317-331.
Foley, B. J., & McPhee, C. (2008). Students’ attitudes towards science in classes using hands-on or textbook based curriculum. American Educational Research Association, 1-12.
Franklin, S., & Peat, M. (2005). Virtual versus real: an argument for maintaining diversity in the learning environment. International Journal of Continuing Engineering Education and Life Long Learning, 15(1-2), 67-78.
Gibson, H. L., & Chase, C. (2002). Longitudinal impact of an inquiry‐based science program on middle school students' attitudes toward science. Science Education, 86(5), 693-705.
Gormally, C., Brickman, P., Hallar, B., & Armstrong, N. (2009). Effects of inquiry-based learning on students’ science literacy skills and confidence. International Journal for the Scholarship of Teaching and Learning, 3(2), 16.
Gräber, W., Erdmann, T., & Schlieker, V. (2001). ParCIS: Partnership between chemical industry and schools. In 2nd International IPN–YSEG Symposium, Kiel, Germany.
Gunstone, R. F. (1991). Reconstructing theory from practical work. Practical Science. Milton Keynes, England: The Open University.
Harlen, W. (2004) Evaluating Inquiry-Based Science Developments, National Academy of Science, available online http://www.nsrconline.org/pdf/NAS_paper_eval_inquiry_science.pdf
Herman, J. L., Aschbacher, P. R., & Winters, L. (1990). Issues in developing alternative assessments. In Annual meeting of the California Educational Research Association, Chicago.
Hofstein, A., & Walberg, H. J. (1995). Instructional strategies. Improving Science Education, 70-89.
Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty‐first century. Science Education, 88(1), 28-54.
Hofstein, A., Navon, O., Kipnis, M., & Mamlok‐Naaman, R. (2005). Developing students' ability to ask more and better questions resulting from inquiry‐type chemistry laboratories. Journal of Research in Science Teaching, 42(7), 791-806.
Holbrook, J., & Rannikmäe, M. (1997). Supplementary teaching materials-Promoting scientific and technological literacy. Paris: International Council of Associations for Science Education.
Holbrook J. (1998). Operationalising scientific and technological literacy: A new approach to science teaching. Science Education International, 9(2), 15-19.
Holbrook, J., & Rannikmae, M. (2007). Nature of science education for enhancing scientific literacy. International Journal of Science Education, 29(11), 1347-1362.
Holbrook, J., & Rannikmae, M. (2009). The meaning of scientific literacy. International Journal of Environmental and Science Education, 4(3), 275-288.
Holstermann, N., Grube, D., & Bögeholz, S. (2010). Hands-on activities and their influence on students’ interest. Research in Science Education, 40(5), 743-757.
Holstermann, N., & Bögeholz, S. (2007). Interesse von Jungen und Mädchen an naturwissenschaftlichen Themen am Ende der Sekundarstufe I [Gender-specific interests of adolescent learners in science topics]. Zeitschrift für Didaktik der Naturwissenschaften, 13, 71-86.
Hurd, P. D. (1969). New directions in teaching secondary school science. Rand McNally.
Johnson, H. L., Trout, B. L., Brekke, C. J., & Luedecke, L. O. (2004). Hands‐on, demonstration, and videotape laboratories for non‐science majors in a food science course: achievement, attitude, and efficiency. Journal of Food Science Education, 3(1), 2-7.
Kern, E. L., & Carpenter, J. R. (1984). Enhancement of student values, interests and attitudes in earth science through a field-oriented approach. Journal of Geological Education, 32(5), 299-305.
Kipnis, M., & Hofstein, A. (2008). The inquiry laboratory as a source for development of metacognitive skills. International Journal of Science and Mathematics Education, 6(3), 601-627.
Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3-4), 313-350.
Kyle Jr, W. C. (1985). What Research Says: Science Through Discovery: Students Love It. Science and Children, 23(2), 39-41.
ICASE. (2003). The way forward. Document adopted by participants at the World Conference on the Relevance of Science and Technology Education for All. Malaysia, Penang: ICASE (International Council of Associations for Science Education) & RECSAM (Regional Education Centre for Science and Mathematics).
Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71-94.
Lawrenz, F., Huffman, D., & Welch, W. (2001). The science achievement of various subgroups on alternative assessment formats. Science Education, 85(3), 279-290.
Lawson, A. E. (1986). Why isn't inquiry used in more classrooms?. The American Biology Teacher, 48(3), 150-158.
Linn, R. L. (2008). Measurement and assessment in teaching. Pearson Education India.
Luckie, D. B., Maleszewski, J. J., Loznak, S. D., & Krha, M. (2004). Infusion of collaborative inquiry throughout a biology curriculum increases student learning: a four-year study of “Teams and Streams”. Advances in Physiology Education, 28(4), 199-209.
Lumpe, A. T., & Oliver, J. S. (1991). Dimensions of hands-on science. The American Biology Teacher, 345-348.
Lunetta, V. N., & Tamir, P. (1979). Matching Lab Activities with Teaching Goals. Science Teacher, 46(5), 22-24.
Magnusson, S. J., & Palincsar, A. S. (1995). The learning environment as a site of science education reform. Theory into Practice, 34(1), 43-50.
Merritt, M. V., Schneider, M. J., & Darlington, J. A. (1993). Experimental design in the general chemistry laboratory. Journal of Chemical Education, 70(8), 660.
Mertler, C. A. (2001). Designing scoring rubrics for your classroom. Practical Assessment, Research & Evaluation, 7(25), 1-10.
Moss, R. (1997). A discovery lab for studying gene regulation. American Biology Teacher, 59(8), 522-26.
National Association of Biology Teachers [NABT] (2005). Role of laboratory and field instruction in biology education. NABT Position Statement. Retrieved November 19, 2008, from http://www.nabt.org/sites/S1/index.php?p=67
National Research Council. (1996). National science education standards. National Academies Press.
National Research Council. (2013). Next generation science standards: For states, by states. Washington, DC: National Academy Press.
Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576.
Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87(2), 224-240.
Nott, M., & Wellington, J. (1996). When the black box springs open: practical work in schools and the nature of science. International Journal of Science Education, 18(7), 807-818.
Pine, J., Aschbacher, P., Roth, E., Jones, M., McPhee, C., Martin, C., ... & Foley, B. (2006). Fifth graders' science inquiry abilities: A comparative study of students in hands‐on and textbook curricula. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 43(5), 467-484.
Reiff, R., Harwood, W. S., & Phillipson, T. (2002). A Scientific Method Based upon Research Scientists’ Conceptions of Scientific Inquiry. In The Annual International Conference of the Association for the Education of Teachers in Science. Greenville, NC.
Rissing, S. W., & Cogan, J. G. (2009). Can an inquiry approach improve college student learning in a teaching laboratory? CBE—Life Sciences Education, 8(1), 55-61.
Roberts, D. A. (2013). Scientific literacy/science literacy. In Handbook of research on science education (pp. 743-794). Routledge.
Robinson, W. R. (2004). The Inquiry Wheel, an Alternative to the Scientific Method: A View of the Science Education Research Literature. Journal of Chemical Education, 81(6), 791–792.
Roth, W. M. (1994). Experimenting in a constructivist high school physics laboratory. Journal of Research in Science Teaching, 31(2), 197-223.
Rutherford, F. J. (1993). Hands-on: a means to an end. Project 2061 Today, 3. Retrieved June 13, 2008, from http://www.project2061.org/publications/2061Connections/archive.htm.
Schwab, J. J. (1958). The teaching of science as inquiry. Bulletin of the Atomic Scientists, 14(9), 374-379.
Schwab, J. (1960). Enquiry, the science teacher, and the educator. The Science Teacher, 27, 6–11.
Stiggins, R. J. (1987). Design and development of performance assessments. Educational Measurement: Issues and Practice, 6(3), 33-42.
Sundberg, M. D., Kormondy, E. J., Carter, J. L., Moore, J. A., Postlethwait, S. N., & Thornton, J. W. (1992). Reassessing the commission on undergraduate education in the biological sciences. BioScience, 42(6), 442-447.
Sundberg, M. D., & Moncada, G. J. (1994). Creating effective investigative laboratories for undergraduates. BioScience, 44(10), 698-704.
Tamir, P. (1977). How are the laboratories used?. Journal of Research in Science Teaching, 14(4), 311-316.
Tobin, K. (1990). Research on science laboratory activities: In pursuit of better questions and answers to improve learning. School Science and Mathematics, 90(5), 403-418.
Udovic, D., Morris, D., Dickman, A., Postlethwait, J., & Wetherwax, P. (2002). Workshop biology: demonstrating the effectiveness of active learning in an introductory biology course. Bioscience, 52(3), 272-281.
United Nations Educational, Scientific and Cultural Organisation. (1993). Final Report: International forum on scientific and technological literacy for all. Paris: UNESCO.
Uno, G. E., & Bybee, R. W. (1994). Understanding the dimensions of biological literacy. BioScience, 44(8), 553-557.
Volkmann, M. J., Abell, S. K., & Zgagacz, M. (2005). The challenges of teaching physics to preservice elementary teachers: Orientations of the professor, teaching assistant, and students. Science Education, 89(5), 847-869.
White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16(1), 3-118.
Wu, H. K., & Hsieh, C. E. (2006). Developing sixth graders’ inquiry skills to construct explanations in inquiry‐based learning environments. International Journal of Science Education, 28(11), 1289-1313.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top