跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/14 23:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李國翊
研究生(外文):Guo-Yi Li
論文名稱:三氧化二鉍改質釩酸鉍/釩酸銀複合材料之光催化應用及表面特性分析
論文名稱(外文):Modification of BiVO4/Ag3VO4 by Bi2O3:Determinations of surface properties and photocatalytic activities
指導教授:吳忠信吳忠信引用關係
指導教授(外文):Chung-Hsin Wu
口試委員:吳忠信林正芳吳萬益胡慶祥
口試委員(外文):Chung-Hsin WuCheng-Fang LinWan-Yi WuQing-Xiang Hu
口試日期:2019-05-30
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:189
中文關鍵詞:釩酸鉍釩酸銀光觸媒
外文關鍵詞:BiVO4Ag3VO4photocatalyst
相關次數:
  • 被引用被引用:3
  • 點閱點閱:298
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用水熱法在 pH 7 下合成觸媒合成釩酸鉍(BiVO4)、釩酸銀(Ag3VO4)及三氧化二
鉍(Bi2O3 Hydrothermal, BOH),另以溶劑熱法合成三氧化二鉍(Bi2O3 Solvothermal, BOS),將
BOH 及 BOS 燒結條件為 200℃, 12hr 稱為 BOH-1 及 BOS-1;燒結條件為 120℃, 6hr 稱為
BOH-2 及 BOS-2,將水熱法合成 BiVO4 前驅液與水熱法合成 Ag3VO4 前驅液以莫耳比 1:1 透
過液-液一步驟合成觸媒 BA-1,將水熱法合成 BiVO4 前驅液與水熱法合成 Ag3VO4 前驅液以
莫耳比 1:2 及 2:1 透過液-液一步驟合成觸媒 BA-2 及 BA-3,將水熱法合成觸媒粉末 BiVO4 與
水熱法合成 Ag3VO4 前驅液以莫耳比 1:1 透過固-液二步驟合成觸媒 BA-4,將水熱法合成觸媒
粉末 Ag3VO4 與水熱法合成 BiVO4 前驅液以莫耳比 1:1 透過固-液二步驟合成觸媒 BA-5,將水
熱法合成 Bi2O3 前驅液、水熱法合成 BiVO4 前驅液與水熱法合成 Ag3VO4 前驅液以莫耳比
1:1:1 透過液-液-液一步驟合成 BBA-1,將觸媒 BOH-1 及 BOS-1 分別與 BA-1 前驅液透過固-
液二步驟合成 BBA-2 及 BBA-3,將觸媒 BA-1 與 BOH-1, BOS-1, BOH-2 及 BOS-2 前驅液透
過固-液二步驟合成 BBA-4 至 BBA-7,以反應紅二(C.I. Reactive Red 2, RR2)為目標污染物進
行光催化降解實驗,找出最佳化觸媒並進行表面物性分析、重複使用性實驗、活性物種捕捉
實驗及太陽光實驗。
BiVO4, Ag3VO4 合成為觸媒 BA 系,Bi2O3, BiVO4 及 Ag3VO4 合成為觸媒 BBA 系,合成前
後以 X-光繞射儀(X-Ray Diffraction, XRD)鑑定其晶相、掃描式電子顯微鏡(Scanning Electron
Microscope, SEM)及穿透式電子顯微鏡(Transmission Electron Microscope, TEM)觀察改質前後
表面形貌、比表面積分析儀(Brunauer-Emmett-Teller, BET)分析比表面積及孔洞大小、螢光分
光光譜儀(Photoluminescence, PL)鑑定電子-電洞對再結合率、界達電位儀(Zeta-Potential)測定
觸媒表面電位及分散穩定性、紫外-可見光光譜儀(UV-Vis Spectrophotometer)分析臨界吸收波
長並計算觸媒能隙值、電子能譜儀(X-Ray Photoelectron Spectrometer, XPS)進行觸媒之元素組
成鑑定與化學鍵結分析。
光催化反應 60 分鐘後 Ag3VO4 之紫外光光催化效率達 97%,觸媒 BA-1 及 BBA-1 紫外光
光催化效率為 92%及 99%;Ag3VO4 之可見光光催化效率僅 10%,觸媒 BA-1 及 BBA-1 可見
光光催化效率分別為 82%及 97%。活性物種捕捉實驗發現,BA-1,BBA-1 及 BBA-7 之主要反
應物種為電洞。觸媒 BA-1, BBA-1 及 BBA-7 可有效抑制電子電洞的再結合,進而提升觸媒對
污染物的降解效率。
將 BA-1, BBA-1 及 BBA-7 進行 ICP-OES 實驗,BA-1, BBA-1 及 BBA-7 之 Ag 總溶出率
分別為 9.33%, 36.2%及 16.6%,推測 BA-1 最能穩定 Ag3VO4 結構。將紫外光光催化反應後之
觸媒 BA-1, BBA-1 及 BBA-7 進行表面特性分析,反應後觸媒之 XRD 特徵峰訊號值以 BA-1
下降幅度最小;SEM 及 TEM 分析結果發現,Ag3VO4 於光催化實驗後有結構崩壞之現象,僅
BA-1 之形貌存在 Ag3VO4 最多且最完整;BET 分析反應後觸媒之比表面積變化發現,BA-1
之比表面積由 4.21 m2g-1 升至 6.95 m2g-1; BBA-1 比表面積由 10.22 m2g-1 升至 12.43 m2g-1; BBA-
7 比表面積由 11.34 m2g-1 升至 11.69 m2g-1。
觸媒 BA-1, BBA-1 及 BBA-7 對目標污染物進行可見光光催化降解實驗,效率以 BBA-7
為最佳可達 97%;重複使用實驗以觸媒 BA-1 為最佳,重複三次光催化實驗效率尚未衰退。


關鍵字:釩酸鉍、釩酸銀、三氧化二鉍、光觸媒、光催化
BiVO4/Ag3VO4 coupled-photocataltst was prepared by hydrothermal method permeation liquidliquid one-step process with BiVO4/Ag3VO4 molar ratio of 1 and was denoted as BA-1.
BiVO4/Ag3VO4/Bi2O3 coupled-photocataltst was generated by hydrothermal method permeation
liquid-liquid-liquid one-step process with BiVO4/Ag3VO4/Bi2O3 molar ratio of 1/1/1 and was
denoted as BBA-1. Adding BA-1 to Bi2O3 precursor solution with BiVO4/Ag3VO4/Bi2O3 molar ratio
of 1/1/1 by sovolthermal method, the generated coupled-photocataltst was noted as BBA-7. C.I.
Reactive Red 2 (RR2) was selected as the target compound. The surface characteristics and
photocatalytic activities of prepared photocatalysts were determined and compared in this study. The
surface properties of photocatalysts were characterized by X-ray diffraction (XRD), brunauer
Emmett teller (BET), scanning electron microscopy (SEM), transmission electron microscopy
(TEM), UV-Vis spectroscopy (UV-Vis), photoluminescence (PL), inductively coupled plasma optical
emission spectrometry (ICP-OES), zeta potential meter and X-ray photoelectron spectroscopy (XPS).
After 60 minutes of UV irradiation, the RR2 removal efficiency of Ag3VO4 was 97%, the RR2
removal percentage of BA-1 and BBA-1 was 92% and 99%, respectively; after 60 minutes of visible
light irradiation, the RR2 removal efficiency of Ag3VO4 was 10%, the RR2 removal percentage of
BA-1 and BBA-1 were 82% and 97%, respectively. The experimental results of active oxidation
species trapping revealed that hydroxyl radicals could be ignored in BA-1, BBA-1 and BBA-7
system, conversely, the photogenerated hole (h+) played a major role and photoinduced electrons
played a minor role in the BA-1, BBA-1 and BBA-7 system. The ICP-OES results showed that BA-
1, BBA-1 and BBA-7 under UV light irradiation showed the Ag dissolution ratio after three times
photocatalysis was 9.33%, 36.2% and 16.6%. The used BA-1, BBA-1 and BBA-7 were characterized
by SEM and found the structure of the used Ag3VO4 collapsed. According to the SEM and TEM
observation, the used BA-1 showed that Ag3VO4 was remain immobilized on the surface of BiVO4
and the structure was not destroyed. After three times photocatalysis, the specific surface area of BA-
1 increased from 4.21 m2/g to 6.95 m2/g; BBA-1 increased from 10.22 m2/g to 12.43 m2/g and BBA-
7 increased from 11.34 m2/g to 11.69 m2/g.


Keywords: BiVO4; Ag3VO4; Bi2O3; photocatalyst; photodegradation
摘要....................................................................................................................................................... I
Abstract................................................................................................................................................III
致謝......................................................................................................................................................V
目錄.................................................................................................................................................... VI
表目錄...................................................................................................................................................IX
圖目錄..................................................................................................................................................X
第一章 緒論..........................................................................................................................................1
1-1 研究動機 ....................................................................................................................................1
1-2 研究目的及內容 ........................................................................................................................2
第二章 文獻回顧..................................................................................................................................3
2-1 高級氧化處理法 ........................................................................................................................3
2-1.1 光催化(Photocatalysis) .......................................................................................................3
2-1.2 光化學法(Photochemical Method) .....................................................................................4
2-2 偶氮染料 ....................................................................................................................................5
2-3 釩酸鉍(BiVO4)特性及合成方法...............................................................................................9
2-3.1 BiVO4 金屬氧化物改質.....................................................................................................16
2-4 釩酸銀(Ag3VO4)特性及合成方法 ..........................................................................................26
2-4.1 Ag3VO4 金屬氧化物改質 ..................................................................................................30
2-5 三氧化二鉍(Bi2O3)材料特性 ..................................................................................................35
第三章 實驗方法................................................................................................................................40
3-1 研究架構 ..................................................................................................................................40
3-2 藥品及儀器 ..............................................................................................................................41
3-3 觸媒命名及合成流程 ..............................................................................................................43
3-3.1 觸媒之命名 .......................................................................................................................43
3-3.2 觸媒合成流程 ...................................................................................................................45
3-3.2.1 水熱法合成 BiVO4 ....................................................................................................45
3-3.2.2 水熱法合成 Ag3VO4..................................................................................................46
3-3.2.3 水熱法合成 Bi2O3......................................................................................................47
3-3.2.4 溶劑熱法合成 Bi2O3..................................................................................................48
3-3.2.5 BA-1 之合成 ...............................................................................................................49
3-3.2.6 BA-2 之合成 ...............................................................................................................50
3-3.2.7 BA-3 之合成 ...............................................................................................................50
VIII
3-3.2.8 BA-4 之合成 ...............................................................................................................51
3-3.2.9 BA-5 之合成 ...............................................................................................................51
3-3.2.10 BBA-1 之合成...........................................................................................................52
3-3.2.11 BBA-2 之合成...........................................................................................................52
3-3.2.12 BBA-3 之合成...........................................................................................................53
3-3.2.13 BBA-4 之合成...........................................................................................................53
3-3.2.14 BBA-5 之合成...........................................................................................................54
3-3.2.15 BBA-6 之合成...........................................................................................................54
3-3.2.16 BBA-7 之合成...........................................................................................................55
3-4 物性分析 ..................................................................................................................................58
3-4.1 紫外-可見光光譜儀(Ultraviolet-Visible Spectroscopy, UV-Vis).....................................58
3-4.2 X 光繞射分析儀(X-Ray Diffraction, XRD)......................................................................59
3-4.3 X 射線光電子能譜(X-Ray Photoelectron Spectroscopy, XPS) ........................................59
3-4.4 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) .............................................59
3-4.5 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) ......................................60
3-4.6 光激螢光分光光譜儀(Photoluminescence, PL)...............................................................60
3-4.7 比表面積分析儀(Brunauer-Emmett-Teller, BET)............................................................60
3-4.8 感應耦合電漿發射光譜儀(Inductively Coupled Plasma Optical Emission Spectrometry,
ICP-OES) .....................................................................................................................................62
3-4.9 粒徑分析儀(Particle Size Analyzer).................................................................................62
3-4.10 界達電位儀(Zeta Potential) ............................................................................................63
3-5 光催化活性實驗 ......................................................................................................................63
3-5.1 直接光解實驗 ...................................................................................................................65
3-5.2 吸附實驗 ...........................................................................................................................65
3-5.3 紫外光降解實驗 ...............................................................................................................66
3-5.4 可見光降解實驗 ...............................................................................................................66
3-5.5 pH 效應實驗 ......................................................................................................................66
3-5.6 活性物種捕捉實驗 ...........................................................................................................67
3-5.7 重複使用性實驗 ...............................................................................................................67
3-5.8 金屬溶出實驗 ...................................................................................................................68
3-5.9 太陽光降解實驗 ...............................................................................................................68
3-5.10 反應動力學模擬 .............................................................................................................68
第四章 結果與討論............................................................................................................................69
4-1 觸媒粉末樣品說明 ..................................................................................................................69
4-2 表面特性分析 ..........................................................................................................................70
4-2.1 晶相分析 ...........................................................................................................................70
4-2.2 掃描式電子顯微鏡分析 ...................................................................................................82
4-2.3 穿透式電子顯微鏡分析 ..................................................................................................100
IX
4-2.4 比表面積分析 .................................................................................................................105
4-2.5 電子-電洞對再結合率比較............................................................................................107
4-2.6 表面電性分析 .................................................................................................................109
4-2.7 觸媒光譜吸收範圍及能隙值鑑定 .................................................................................110
4-2.8 元素組成及鍵結分析 .....................................................................................................113
4-3 光催化活性實驗結果 ............................................................................................................123
4-3.1 直接光解 .........................................................................................................................123
4-3.2 Ag3VO4 光催化實驗結果 ................................................................................................124
4-3.3 Bi2O3 光催化實驗結果 ....................................................................................................125
4-3.4 BiVO4 光催化實驗結果...................................................................................................127
4-3.5 Ag3VO4, BiVO4 及 BA-1 之光催化實驗結果.................................................................127
4-3.6 BA-1, BA-2 及 BA-3 之光催化實驗結果.......................................................................128
4-3.7 BA-1, BA-4 及 BA-5 之光催化實驗結果.......................................................................129
4-3.8 BA-1 及 BBA-1 之光催化實驗結果...............................................................................130
4-3.9 BBA-1, BBA-2, BBA-3, BBA-4 及 BBA-5 之光催化實驗結果 ...................................131
4-3.10 BBA-1, BBA-6 及 BBA-7 之光催化實驗結果.............................................................133
4-3.7 pH 效應 ............................................................................................................................137
4-3.8 重覆使用性實驗 .............................................................................................................138
4-3.9 金屬溶出分析 .................................................................................................................141
4-3.10 活性物種捕捉實驗 .......................................................................................................143
4-3.11 觸媒光催化反應動力學模擬 .......................................................................................146
4-3.12 太陽光實驗 ...................................................................................................................151
4-4 光觸媒催化反應機制 ............................................................................................................154
4-5 光催化反應實驗後之表面分析 ............................................................................................157
4-5.1 晶相分析 .........................................................................................................................157
4-5.2 掃描式電子顯微鏡分析 .................................................................................................160
4-5.3 穿透式電子顯微鏡分析 ..................................................................................................165
4-5.4 比表面積分析 .................................................................................................................172
第五章 結論與建議..........................................................................................................................174
5-1 結論 ........................................................................................................................................174
5-2 建議 ........................................................................................................................................175
參考文獻............................................................................................................................................176
Akbarzadeh, R., Fung, C. S.L., Rather, R. A., & Lo, I.M.C. (2018). One-pot hydrothermal synthesis of g-C3N4/Ag/AgCl/BiVO4 micro-flower composite for the visible light degradation of ibuprofen, Chemical Engineering Journal, 341, 248–261.

Akel, S., Dillert, R., Balayeva, N. O., Boughaled, R., Koch, J., Azzouzi, M. E., & Bahnemann, D. W. (2018). Ag/Ag2O as a Co-Catalyst in TiO2 Photocatalysis: Effect of the Co-Catalyst/Photocatalyst Mass Ratio, Catalysts, 8, 647.

Awazu, K., Fujimaki, M., Rockstuhl, C., Tominaga, J., Murakami, H., Ohki, Y., Yoshida, N., & Watanabe, T. (2008). A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. Journal of the American Chemical Society, 130(5), 1676–1680.

Bajaj, R., Sharma, M., & Bahadur, D. (2013). Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye. Dalton Transactions, 42(19), 6736–6744.

Belver, C., Adan, C., Garcia-Rodriguez, S., & Fernandez-Garcia, M. (2013). Photocatalytic behavior of silver vanadates: microemulsion synthesis and post-reaction characterization. Chemical Engineering Journal, 224, 24–31.

Cai, P., Zhou, S. M., Ma, D. K., Liu, S. N., Chen, W., & Huang, S. M. (2015). Fe2O3-modified porous BiVO4 nanoplates with enhanced photocatalytic activity. Nano-Micro Letters, 7(2), 183–193.

Chen, Q., Wang, Y., Wang, Y., Zhang, X., Duan, D., & Fan, C. (2017). Nitrogen-doped carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced visible light driven photocatalytic activity and stability. Journal of Colloid and Interface Sciences, 491, 238–245.

Colindres, P., Yee-Madeira, H., & Reguera, E. (2010). Removal of reactive black 5 from aqueous solution by ozone for water reuse in textile dyeing processes. Desalination, 258(1–3), 154–158.

Creutz, C., Brunschwig, B. S., & Sutin, N. (2006). Interfacial charge transfer absorption: application to metal–molecule assemblies. Chemical Physics, 324, 244–258.

Cui, Y., Liu, X. Y., Chung, T. S., Weber, M., Staudt, C., & Maletzko, C. (2016). Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: evaluation of FO as an alternative method to reverse osmosis (RO). Water Research, 91, 104–114.

Cui, D. H., Zheng, Y. F., & Song, X. C. (2017). A novel visible-light-driven photocatalyst Ag2O/AgI with highly enhanced photocatalytic performances, Journal of Alloys and Compounds, 701, 163–169.

Du, X., Wan, J., Jia, J., Pan, C., Hu, X., Fan, J., & Liu, E. (2017). Photocatalystic degradation of RhB over highly visible-light-active Ag3PO4-Bi2MoO6 heterojunction using H2O2 electron capturer. Materials and Design, 119, 113–123.

Fedorov, K., Jia, L., Guo, X., & Li, J. (2016). Influence of sulfation treatment on photocatalytic performance of mesoporous Bi2O3–TiO2 composites. Journal of Nanoscience and Nanotechnology, 16, 7490–7496.

Gadipelly, C., Perez-Gonzalez, A., Yadav, G. D., Ortiz, I., Ibanez, R., Rathod, V. K., & Marathe, K.V. (2014). Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Industrial & Engineering Chemistry Research, 53(29), 11571–11592.

Gao, X., Wang, Z., Fu, F., & Li, W. (2015). Effects of pH on the hierarchical structures and photocatalytic performance of Cu-doped BiVO4 prepared via the hydrothermal method, Materials Science in Semiconductor Processing, 35, 197–206.

Gotic, M., Music, S., Ivanda, M., Soufek, M., & Popovic, S. (2005). Synthesis and characterisation of bismuth(III) vanadate. Journal of Molecular Structure, 744–747, 535–540.

Hanaor, D., Michelazzi, M., Leonelli, C., & Sorrell, C. C. (2012). The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2, Journal of the European Ceramic Society, 32, 235–244.

Hsieh, S. H., Manivel, A., Lee, G. J., & Wu, J. J. (2013). Synthesis of mesoporous Bi2O3/CeO2 microsphere for photocatalytic degradation of Orange II dye. Materials Research Bulletin, 48, 4174–4180.

Hu, X., & Hu, C. (2007). Preparation and visible-light photocatalytic activity of Ag3VO4 powders. Journal of Solid State Chemistry, 180, 725–732.

Hu, Z., Zhou, J., Zhang, Y., Liu, W., Zhou, J., & Cai, W. (2018). The formation of a direct Z-scheme Bi2O3/MoO3 composite nanocatalyst with improved photocatalytic activity under visible light, Chemical Physics Letters, 706, 208–214.

Huang, C. M., Pan, G. T., Li, Y. C. M., Li, M. H., & Yang, T. C. K. (2009). Crystalline phases and photocatalytic activities of hydrothermal synthesis Ag3VO4 and Ag4V2O7 under visible light irradiation. Applied Catalysis A: General, 358, 164–172.

Jiang, H., Dai, H., Meng, X., Zhang, L., Deng, J., Liu, Y., & Au, C. T. (2011a). Hydrothermal fabrication and visible-light-driven photocatalytic properties of bismuth vanadate with multiple morphologies and/or porous structures for Methyl Orange degradation. Journal of Environmental Sciences, 24(3), 449–457.

Jiang, H., Dai, H., Meng, X., Ji, K., Zhang, L., & Deng, J. (2011b). Porous olive-like BiVO4: alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol. Applied Catalysis B, Environmental, 105(3–4), 326–334.

Jiang, L., Chen, D., Qin, L., Liang, J., Sun, X., & Huang, Y. (2019). Enhanced photocatalytic activity of hydrogenated BiVO4 with rich surface-oxygen-vacancies for remarkable degradation of tetracycline hydrochloride, Journal of Alloys and Compounds, 783, 10–18.

Joseph, C. G., Li Puma, G., Bono, A., & Krishnaiah, D. (2009). Sonophotocatalysis in advanced oxidation process: a short review. Ultrasonics Sonochemistry, 16(5), 583–589.

Ju, P., Wang, P., Li, B., Fan, H., Ai, S., Zhang, D., & Wang, Y. (2014). A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity. Chemical Engineering Journal, 236, 430–437.

Karunakaran, C., Kalaivani, S., Vinayagamoorthy, P., & Dash, S. (2014). Optical, electrical and visible light-photocatalytic properties of yttrium-substituted BiVO4 nanoparticles. Materials Letters, 122, 21–24

Keim, W. (2003). Multiphase catalysis and its potential in catalytic processes: the story of biphasic homogeneous catalysis. Green Chemistry, 5(2), 105–111.

Kudo, A. Ueda, K., Kato, H., & Mikami, I. (1998). Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catalysis Letters, 53, 229–230.

Lai, C., Zhang, M., Li, B., Huang, D., Zeng, G., Qin, L., Liu, X., Yi, H., Cheng, M., Li, L., Chen, Z., & Chen, L. (2019). Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for Ciprofloxacin degradation and mechanism insight, Chemical Engineering Journal, 358, 891–902.

Lee, J. W., Choi, S. P., Thiruvenkatachari, R., Shim, W. G., & Moon, H. (2006). Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes and Pigments, 69(3), 196–203.

Li, K., Yang, C., Xu, Y., Ying, D., Wang, Y., & Jia, J. (2012). Effect of inorganic anions on Rhodamine B removal under visible light irradiation using Bi2O3/Ti rotating disk reactor. Chemical Engineering Journal, 211–212, 208–215.

Li, Z. Q., Chen, X. T., & Xue, Z. L. (2013). Microwave-assisted synthesis and photocatalytic properties of flower-like Bi2WO6 and Bi2O3–Bi2WO6 composite, Journal of Colloid and Interface Science, 394, 69–77.

Li, J., Zhao, W., Guo, Y., Wei, Z., Han, M., He, H., Yang, S., & Sun, C. (2015). Facile synthesis and high activity of novel BiVO4/FeVO4 heterojunction photocatalyst for degradation of metronidazole. Applied Surface Science, 351, 270–279.

Li, T., Hu, X., Liu, C., Tang, C., Wang, X., & Luo, S. (2016). Efficient photocatalytic degradation of organic dyes and reaction mechanism with Ag2CO3/Bi2O2CO3 photocatalyst under visible light irradiation. Journal of Molecular Catalysis A: Chemical, 425, 124–135.

Li, X., Zhou, M., Pan, Y., Xu, L., & Tang, Z. (2017a). Highly efficient advanced oxidation processes (AOPs) based on pre-magnetization Fe0 for wastewater treatment. Separation and Purification Technology, 178, 49–55.

Li, F., Wang, F., Meng, L., Han, M., Guo, Y., & Sun, C. (2017b). Controlled synthesis of BiVO4/SrTiO3 composite with enhanced sunlight-driven photofunctions for sulfamethoxazole removal. Journal of Colloid and Interface Science, 485, 116–122

Li, S., Hu, S., Jiang, W., Liu, Y., Liu, J., & Wang, Z. (2017c). Facile synthesis of flower-like Ag3VO4/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity. Journal of Colloid and Interface Science, 501, 156–163.

Li, S., Hu, S., Jiang, W., Liu, Y., Liu, J., & Wang, Z. (2017d). Facile synthesis of flower-like Ag3VO4/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity, Journal of Colloid and Interface Science, 501, 156–163.

Li, Y., Xiao, X., & Ye, Z. (2019). Fabrication of BiVO4/RGO/Ag3PO4 ternary composite photocatalysts with enhanced photocatalytic performance, Applied Surface Science, 467–468, 902–911.

Liang, Z., Cao, Y., Li, Y., Xie, J., Guo, N., & Jia, D. (2016). Solid-state chemical synthesis of rod-like fluorine-doped β-Bi2O3 and their enhanced photocatalytic property under visible light. Applied Surface Science, 390, 78–85.

Liu, S., Tang, H., Zhou, H., Dai, G., & Wang, W. (2016). Photocatalytic perfermance of sandwich-like BiVO4 sheets by microwave assisted synthesis. Applied Surface Science, 391, 542–547.

Lu, Y., Shang, H., Shi, F., Chao, C., Zhang, X., & Zhang, B. (2015). Preparation and efficient visible light-induced photocatalytic activity of m-BiVO4 with different morphologies. Journal of Physics and Chemistry of Solids, 85, 44–50.

Lu, G., Wang, F., & Zou, X. (2017). Hydrothermal synthesis of m-BiVO4 and m-BiVO4/BiOBr with various facets and morphologies and their photocatalytic performance under visible light. Journal of Alloys and Compounds, 697, 417–426.

Magesan, P., Ganesan, P., & Umapathy, M. J. (2016). Ultrasonic-assisted synthesis of doped TiO2 nanocomposites: characterization and evaluation of photocatalytic and antimicrobialactivity. Optik, 127, 5171–5180.

Malathi, A., Madhavan, J., Ashokkumar, M., & Arunachalam, P. (2018). A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications, Applied Catalysis A, General, 555, 47–74.

Mao, M., Chen, F., Zheng, C., Ning, J., Zhong, Y., & Hu, Y. (2016). Facile synthesis of porous Bi2O3-BiVO4 p-n heterojunction composite microrods with highly efficient photocatalytic degradation of phenol. Journal of Alloys and Compounds, 688, 1080–1087.

Mehring, M. (2007). From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds. Coordination Chemistry Reviews, 251(7–8), 974–1006.

Meng, X., Zhang, L., Dai, H., Zhao, Z., Zhang, R., & Liu, Y. (2011). Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites. Materials Chemistry and Physics, 125, 59–65.

Obregón, S., Caballero, A., & Colón, G. (2012). Hydrothermal synthesis of BiVO4: Structural and morphological influence on the photocatalytic activity, Applied Catalysis B: Environmental, 117–118, 59–66.

Pan, G. T., Lai, M. H., Juang, R. C., Chung, T. W., & Yang, T. C. K. (2011). Preparation of visible-light-driven silver vanadates by a microwave-assisted hydrothermal method for the photodegradation of volatile organic vapors. Industrial & Engineering Chemistry Research, 50, 2807–2814.

Ran, R., Meng, S., & Zhang, Z. (2016a). Facile preparation of novel graphene oxide-modified Ag2O/Ag3VO4/AgVO3 composites with high photocatalytic activitiesunder visible light irradiation. Applied Catalysis B: Environmental, 196, 1–15.

Ran, R., Mcevoy, J. G., & Zhang, Z. (2016b). Ag2O/Ag3VO4/Ag4V2O7 heterogeneous photocatalyst prepared by a facile hydrothermal synthesis with enhanced photocatalytic performance under visible light irradiation. Materials Research Bulletin, 74, 140–150.

Saison, T., Chemin, N., Chaneac, C., Durupthy, O., Ruaux, V., Mariey, L., Mauge, F., Beaunier, P., & Jolivet, J. P. (2011). Bi2O3, BiVO4, and Bi2WO6 : impact of surface properties on photocatalytic activity under visible light. The Journal of Physical Chemistry C, 115(13), 5657–5666.

Samran, B., lunput, S., Tonnonchiang, S., & Chaiwichian, S. (2019). BiFeO3/BiVO4 nanocomposite photocatalysts with highly enhanced photocatalytic activity for rhodamine B degradation under visible light irradiation, Physica B: Condensed Matter, 561, 23–28.

Sangiorgi, N., Aversa, L., Tatti, R., Verucchi, R., & Sanson, A. (2017). Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials. Optical Materials, 64, 18–25.

Sasaki, Y., Nemoto, H., Saito, K., & Kudo, A. (2009). Solar water splitting using powdered photocatalysts driven by z-schematic interparticle electron transfer without an electron mediator. Journal of Physical Chemistry C, 113(40), 17536–17542.

Shi, H., Zhang, C., & Zhou, C. (2015). g-C3N4 hybridized with AgVO3 nanowires: preparation and its enhanced visible-light-induced photocatalytic activity. RSC Advances, 5, 50146–50154.

Shi, Y., Luo, L., Zhang, Y., Chen, Y., Wang, S., Li, L., Long, Y., & Jiang, F. (2017). Synthesis and characterization of α/β-Bi2O3 with enhanced photocatalytic activity for 17α-ethynylestradiol. Ceramics International, 43(10), 7627–7635.

Sun, J., Li, X., Zhao, Q., Tade, M., & Liu, S. (2013). Quantum-sized BiVO4 modified TiO2 microflower composite heterostructure: efficient production of hydroxyl radicals towards visible light-driven degradation of gaseous toluene. Journal of Materials Chemistry A, 00, 1–3.

Sun, J., Li, X., Zhao, Q., Ke, J., & Zhang, D. (2014). Novel V2O5/BiVO4/TiO2 nanocomposites with high visible-light-induced photocatalytic activity for the degradation of toluene. The Journal of Physical Chemistry C, 118, 10113–10121.

Vu, T. A., Dao, C. D., Hoang, T. T. T., Dang, P. T., Tran, H. T. K., Nguyen, K. T., Le, G. H., Nguyen, T. V., & Lee, G. D. (2014). Synthesis of novel silver vanadates with high photocatalytic and antibacterial activities. Materials Letters, 123, 176–180.

Wang, M., Liu, Q., Che, Y., Zhang, L., & Zhang, D. (2013). Characterization and photocatalytic properties of n-doped BiVO4 synthesized via a sol-gel method. Journal of Alloys and Compounds journal, 548, 70–76.

Wang, S., Guan, Y., Wang, L., Zhao, W., He, H., Xiao, J., Yang, S., & Sun, C. (2015). Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption–photocatalysis for efficient treatment of dye wastewater. Applied Catalysis B: Environmental, 168–169, 448–457.

Wang, M., Xi, X., Gong, C., Zhang, X. L., & Fan, G. (2016a). Open porous BiVO4 nanomaterials: electronspinning fabrication and enhanced visible light photocatalytic activity. Materials Research Bulletin, 74, 258–264.

Wang, M., Lu, W., Chen, D., Liu, J., Hu, B., Jin, L., Lin, Y., Yue, D., Huang, J., & Wang, Z. (2016b). Synthesis of dendritic-like BiVO4: Ag heterostructure for enhanced and fast photocatalytic degradation of RhB solution. Materials Research Bulletin, 84, 414–421.

Wang, W. W., Zhu, D., Shen, Z., Peng, J., Luo, J., & Liu, X. H. (2016c). One-pot hydrothermal route to synthesize the Bi-doped anatase TiO2 hollow thin sheets with prior facet exposed for enhanced visible-light-driven photocatalytic activity. Industrial & Engineering Chemistry Research, 55, 6373−6383.

Wang, P., Tang, H., Ao, Y., Wang, C., Hou, J., Qian, J., & Li, Y. (2016d). In-situ growth of Ag3VO4 nanoparticles onto BiOCl nanosheet to form a heterojunction photocatalyst with enhanced performance under visible light irradiation. Journal of Alloys and Compounds, 688, 1–7.

Wang, X., Zhou, J., Zhao, S., Chen, X., & Yu, Y. (2018). Synergistic effect of adsorption and visible-light photocatalysis for organic pollutant removal over BiVO4/carbon sphere nanocomposites, Applied Surface Science, 453, 394–404.

Wangkawong, K., Phanichphant, S., Tantraviwat, D., & Inceesungvorn, B. (2015). CoTiO3/Ag3VO4 composite: a study on the role of CoTiO3 and the active species in the photocatalytic degradation of methylene blue. Journal of Colloid and Interface Science, 454, 210–215.

Wei, W., Yue, X., Cui, H., Lu, X., & Xie, J. (2013). Hydrothermal synthesis and properties of BiVO4 photocatalysts. Journal of Materials Research, 28(24), 3408–3416.

Wetchakun, N., Chainet, S., Phanichphant, S., & Wetchakun, K. (2015). Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites, Ceramics International, 41, 5999–6004.

Wu, C. H. (2004). Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor system. Chemosphere, 57, 601–608.

Xie, Y., Dai, Y., Yuan, X., Jiang, L., Zhou, L., Wu, Z., Zhang, J., Wang, H., & Xiong, T. (2018). Insight on the plasmonic Z-scheme mechanism underlying the highly efficient photocatalytic activity of silver molybdate/silver vanadate composite in rhodamine B degradation, Journal of Colloid and Interface Science, 530, 493–504.

Xu, J., Hu, C., Xi, Y., Wan, B., Zhang, C., & Zhang, Y. (2012). Synthesis and visible light photocatalytic activity of b-AgVO3 nanowires. Solid State Sciences, 14, 535–539.

Xue, S., Wei, Z., Hou, X., Xie, W., Li, S., Shang, X., & He, D. (2015). Enhanced visible-light photocatalytic activities and mechanism insight of BiVO4/Bi2WO6 composites with virus-like structures. Applied Surface Science, 355, 1107–1115.

Yuan, H., Liu, J., Li, J., Li, Y., Wang, X., Zhang, Y., Jiang, J., Chen, S., Zhao, C., & Qian, D. (2015). Designed synthesis of a novel BiVO4-Cu2O-TiO2 as an efficient visible-light-resonding photocatalyst. Journal of Colloid and Interface Science, 444, 58–66.

Yue, L., Wang, S., Shan, G., Wu, W., Qiang, L., & Zhu, L. (2015). Novel MWNTs-Bi2WO6 composites with enhanced simulated solar photoactivity toward adsorbed and free tetracycline in water. Applied Catalysis B: Environmental, 176–177, 11–19.

Yu, M., Shang, C., Meng, G. Q., Chen, Z., Jin, M., Shui, L., Zhang, Y., Zhang, Z., Yuan, M., Wang, X., & Zhou, G. (2019). Synthesis and characterization of mesoporous BiVO4 nanofibers with enhanced photocatalytic water oxidation performance, Applied Surface Science, 481, 255–261.

Zhan, J., & Ma, Z. (2017). Enhanced visible-light photocatalytic performance of Ag3VO4/Bi2WO6 heterojunctions in removing aqueous dyes and tetracycline hydrochloride. Journal of the Taiwan Institute of Chemical Engineers, 78, 212–218.

Zhang, X., Dong, W., & Yang, W. (2013). Decolorization efficiency and kinetics of typical reactive azo dye RR2 in the homogeneous Fe(II) catalyzed ozonation process. Chemical Engineering Journal 233, 14–23.

Zhang, T., Liu, M., Meng, Y., Huang, B., Pu, X., & Shao, X. (2018). A novel method for the synthesis of Ag3VO4/Ag2VO2PO4 heterojunction photocatalysts with improved visible-light photocatalytic properties, Separation and Purification Technology, 206, 149–157.

Zhao, X., Huang, J., Feng, L., Cao, L., Li, J., & Zhou, L. (2017). Facile synthesis of α-Ag3VO4 hollow nanospheres with improved photocatalytic activities. Journal of Alloys and Compounds, 718, 7–14.

Zhao, W., Feng, Y., Huang, H., Zhou, P., Li, J., Zhang, L., Dai, B., Xu, J., Zhu, F., Sheng, N., & Leung, D. Y. C. (2019). A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: Study on the excellent photocatalytic performance and photocatalytic mechanism, Applied Catalysis B: Environmental, 245, 448–458.

Zhou, L., Wang, W., Liu, S., Zhang, L., Xu, H., & Zhu, W. (2006). A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. Journal of Molecular Catalysis A: Chemical, 252(1–2), 120–124.

Zhou, Y., Vuille, K., Heel, A., Probst, B., Kontic, R., & Patzke, G. R. (2010a). An inorganic hydrothermal route to photocatalytically active bismuth vanadate. Applied Catalysis A: General, 375(1), 140–148.

Zhou, B., Zhao, X., Liu, H., Qu, J., & Huang, C.P. (2010b). Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions, Applied Catalysis B: Environmental, 99, 214–221.

Zhou, B., Zhao, X., Liu, H., Qu, J., & Huang, C.P. (2011). Synthesis of visible-light sensitive M–BiVO4 (M = Ag, Co, and Ni) for the photocatalytic degradation of organic pollutants, Separation and Purification Technology, 77, 275–282.

Zou, X., Dong, Y., Zhang, X., & Cui, Y. (2016). Synthesize and characterize of Ag3VO4/TiO2 nanorods photocatalysts and its photocatalytic activity under visible light irradiation. Applied Surface Science, 366, 173–180.

陳威名,(2017)以水熱法製備及改質釩酸鉍為可見光激發觸媒之研究,國立高雄應用科技大學,碩士論文。

關育聖,(2017)三氧化二鉍/釩酸銀複合材料之光催化應用及表面特性分析,國立高雄應用科技大學,碩士論文。

林永輝,(2018)三氧化二鉍改質釩酸鹽氧化物為可見光激發觸媒之研究,國立高雄科技大學,碩士論文。

電子全文 電子全文(網際網路公開日期:20240710)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊