跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/18 03:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李唯均
研究生(外文):LI, Wei-jun
論文名稱:以微波電漿循環再生用以吸附氨氮廢水之合成沸石之研究
論文名稱(外文):The Regeneration and Reuse of Synthesized Zeolite for Adsorbing Ammonia-N in Wastewater by Using Microwave Plasma Approach
指導教授:蔡政賢蔡政賢引用關係
指導教授(外文):Tsai, Cheng-Hsien
口試委員:蔡政賢廖渭銅趙浩然
口試委員(外文):Tsai, Cheng-HsienLiao, Wei-TungChao, How-Ran
口試日期:2019-06-13
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:98
中文關鍵詞:氨氮沸石微波電漿乾式再生破壞
外文關鍵詞:ammonia nitrogenzeolitemicrowave plasmaregenerationdestruction
相關次數:
  • 被引用被引用:3
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
高濃度氨氮廢水,進入水體會嚴重影響生態,雖然目前已有許多處理氨氮的技術,但缺乏短時間內可快速轉化氨氮之方法。本研究因此以自行合成之沸石 (zeolite),對含高濃度氨氮之溶液進行吸附,並以常壓微波電漿進行沸石再生,達到轉化去除氨氮之目的。
去除水中氨氮之實驗,於 25℃、沸石劑量 (5~20 mg-zeolite/mg-NH4+-N) 下,探討初始氨氮濃度 (5-1000 mg-NH4+-N/L),以及吸附時間 (0.25-48 hr),對氨氮吸附容量 (mg NH4+-N/g zeolite),以及氨氮去除率之影響。 接著以常壓微波電漿進行再生,在1200 W、再生時間 2 min下,探討不同溫度 (200-400℃) 與氣體 (氮氣、空氣) 對氨氮破壞率與沸石再生能力之影響。 再生驗證乃藉由氯化鈉溶液,於 mole-Na+/g-zeolite = 1/1、脫附時間 30 min、25℃ 下進行;並與熱再生 (300℃、氮氣、升溫速率 15℃/min、恆溫 0 hr) 效果進行比較。
結果顯示:自行合成之沸石,主要為 X 型,含有少量 A 型。 在25℃、吸附時間 15 min、固液比 5 mg-zeolite/mg-NH4+-N下沸石之氨氮吸附容量最高可達 41.4 mg NH4+-N/g-zeolite,並於15 mins 達到飽和,具高吸附容量與快速吸附之能力。 以 2 M NaCl 溶液脫附,氨氮脫附率可達80%。 除此之外,在 25℃、初始濃度 1000 mg-NH4+-N/L、吸附15 min後,氨氮去除率可達 60% (吸附容量29.8 mg NH4+-N/g-zeolite)。 以常壓空氣微波電漿 (1200 W) 進行沸石再生,在 400℃ 時,氨氮脫附率可達 94%,但造成沸石結構與形貌破壞,導致難以進行重複吸附。 比較 300℃ 之電漿再生與熱再生,空氣電漿再生脫附量為吸附容量之 79.2%,具較佳的應用潛勢,降低電漿溫度低於 300℃,雖然再生效果較差,但對於沸石晶相、比表面積影響較小,相對於 300℃ 的熱再生結果較好,具有重複吸附使用之潛力。


The increasing levels of highly concentrated ammonium nitrogen wastewater in different bodies of water can cause serious ecological damage. Despite the abundance of techniques in treating ammonium nitrogen in water, there is still a lack of method that can be used to rapidly convert it. In this study, synthetic zeolite was utilized to adsorb high concentration of ammonium nitrogen in a simulated solution, and then the zeolite was regenerated via a rapid, dry plasma chemical process in order to convert and remove the ammonium nitrogen.
The removal of NH4+-N from water was conducted using 5~20 g-zeolite/L-wastewater, 5-1000 mg-NH4+-N/L of NH4+-N, adsorption time of 0.25-48 hour, and operated at 25℃. The effect of ammonium nitrogen adsorption capacity (mg NH4+-N/g zeolite) and the NH4+-N removal rate (%) were studied. The regeneration of zeolite was then carried out at 1200 W and 200-400℃ for 2 min using nitrogen or air microwave plasma torch. The comparisons of zeolite after regeneration by different methods such as plasma, NaCl solution, and thermal treatment, was also performed in this study.
The results from the analyses (crystal structure and morphology) made indicated that the synthetic zeolite is mainly composed of X-type zeolite and a trace of type A zeolite. Based on the conducted experiment, the maximum adsorption capacity could reach up to 41.4 mg NH4+-N/g zeolite and it can reach saturation within 15 minutes. This indicates that the zeolite has a high and rapid adsorption to ammonium nitrogen. Moreover, the ammonium nitrogen desorption rate can reach up to 80% when it was desorbed with 2 M NaCl solution. The study also revealed that at the given parameter: 25℃, initial NH4+-N concentration of 1000 mg-NH4+-N/L, and adsorption time of 15 min, the removal efficiency of NH4+-N reached 60% with an adsorption capacity of 29.8 mg NH4+-N/g-zeolite. The regeneration of zeolite was done using air plasma at 1200 W and 400℃. However, at 400℃, the desorption rate of NH4+-N reached up to 94% but the structure and morphology of zeolite were damaged, which resulted to a difficulty in repeated adsorption. Upon the comparison of plasma and thermal regeneration at 300°C, it is found out that the generated amount of air plasma regeneration and desorption is 79.2% of the theoretical adsorption capacity, which leads to an increased application efficiency. When the plasma is operated below 300℃, the specific surface area and destruction efficiency of NH4+-N have minimal influence in the decrease of adsorption capacity of the regenerated zeolite. However, it was detected that the zeolite retained its original crystal structure and morphology. In conclusion, the regeneration and reuse of synthesized zeolite for adsorbing ammonia -N in wastewater and desorption by dry plasma process, is a promising technique in the treatment of industrial wastewater.

總目錄
摘要 I
Abstract II
誌謝 IV
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 前言 1
1-1 研究動機與目的 1
1-2 研究內容 2
第二章 文獻回顧 3
2-1氨氮廢水 3
2-1-1 氨氮廢水來源及危害 3
2-1-2 氨氮廢水排放法規 4
2-2 氨氮廢水處理技術 6
2-3沸石簡介與吸附原理 9
2-4 沸石應用於廢水之處理 14
2-4-1 氨氮 14
2-4-2 重金屬 16
2-4-3 無機陰離子 17
2-4-4 有機汙染物 18
2-5 電漿簡介 21
2-5-1 微波電漿原理 21
2-5-2 電漿破壞氨之機制 23
第三章 實驗方法與步驟 25
3-1 實驗設備與藥品 25
3-1-1 材料與藥品 25
3-1-2 實驗裝置 25
3-1-3 分析儀器 27
3-2 實驗流程與參數設定 30
3-2-1 實驗流程 30
3-3-2 參數設定 33
3-3-3 實驗步驟 34
第四章 結果與討論 38
4-1 合成沸石之特徵分析 38
4-2 沸石吸附能力探討 43
4-2-1 吸附時間對沸石吸附容量之影響 43
4-2-2 初始濃度對沸石吸附能力之影響 44
4-3 沸石再生效益評估 46
4-3-1 氯化鈉溶液重複再生 LSX 沸石之結果 46
4-3-2 電漿再生與熱再生之效果比較 47
4-4 多次再生方法比較 49
4-4-1 重複吸附-再生成效探討 49
4-4-2 電漿重複再生對沸石吸附容量之影響 50
4-5 不同再生方法之特徵分析 53
4-5-1 吸附與化學再生對 LSX 沸石之影響 53
4-5-2 電漿重複再生對沸石之影響 58
4-5-3 熱再生對沸石之影響 74
第五章 結論與建議 78
5-1 結論 78
5-2 建議 80
參考文獻 81

Aronsson, B. O., Lausmaa, J., Kasemo, B., “Glow Discharge Plasma Treatment for Surface Cleaning and Modification of Metallic Biomaterials”, J. Biomed. Mater. Res., 35, 49-73, 1997.
Augspurger, T., Keller, A. E., Black, M. C., Cope, W. G., Dwyer, F. J., “Water Quality Guidance for Protection of Freshwater Mussels (Unionidae) from Ammonia Exposure”, Environmental Toxicology and Chemistry:An International Journal, 22 (11), 2569-2575, 2003.
Alvarez-Ayuso, E., Garcıa-Sánchez, A., Querol, X., “Purification of Metal Electroplating Waste Waters Using Zeolites”, Water Research, 37 (20), 4855-4862, 2003.
Ashrafizadeh, S. N., Khorasani, Z., Gorjiara, M., “Ammonia Removal from Aqueous Solutions by Iranian Natural Zeolite”, Separation Science and Technology, 43 (4), 960-978, 2008.
Azizi, S. N., Ghasemi, S., Kavian, S., “Synthesis and Characterization of NaX Nanozeolite Using Stem Sweep as Silica Source and Application of Ag-Modified Nanozeolite in Electrocatalytic Reduction of H2O2”, Biosensors and Bioelectronics, 62, 1-7, 2014.
Breck, D. W., Zeolite Molecular Sieves:Structure, Chemistry, and Use, Wiley, New York, 1973
Breck, D. W., Zeolite Molecular Sieves:Structure, Chemistry and Use, Lndon:Wiley & Sons, 1974.
Barrer, R. M., Hydrothermal Chemistry of Zeolites, Academic Press, London; New York, 1982.
Bennett, J. M., Cohen, J. M., Artioli, G., Pluth, J. J., Smith, J. V., “Crystal Structure of AlPO4-21, a Framework Aluminophosphate Containing Tetrahedral Phosphorus and Both Tetrahedral and Trigonal-Bipyramidal Aluminum in 3-, 4-, 5-, and 8-Rings”, Inorganic Chemistry, 24 (2), 188-193, 1985.
Bu, X., Feng, P., Gier, T. E., Zhao, D., Stucky, G. D., “Hydrothermal Synthesis and Structural Characterization of Zeolite-Like Structures Based on Gallium and Aluminum Germanates”, Journal of the American Chemical Society, 120 (51), 13389-13397, 1998.
Bu, X., Gier, T. E., Feng, P., Stucky, G. D., “Template Control of Framework Topology and Charge in New Phosphate-and Arsenate-Based Sodalite Analogs”, Microporous and Mesoporous Materials, 20 (4-6), 371-379, 1998.
Bolan, N. S., Mowatt, C., Adriano, D. C., Blennerhassett, J. D., “Removal of Ammonium Ions from Fellmongery Effluent by Zeolite”, Communications in Soil Science and Plant Analysis, 34 (13-14), 1861-1872, 2003.
Bermejo, M. D., Cantero, F., Cocero, M. J., “Supercriical Water Oxidation of Feeds with High Ammonia Concentrations:Pilot Plant Experimental Results and Modeling”, Chemical Engineering Journal, 137 (3), 542-549, 2008.
Batley, G. E., Simpson, S. L., “Development of Guidelines for Ammonia in Estuarine and Marine Water Systems”, Marine Pollution Bulletin, 58 (10), 1472-1476, 2009.
Cincotti, A., Mameli, A., Locci, A. M., Orrù, R., Cao, G., “Heavy Metals Uptake by Sardinian Natural Zeolites:Experiment and Modeling”, Industrial & Engineering Chemistry Research, 45 (3), 1074-1084, 2006.
Chen, X., Song, H., Guo, Y., Wang, L., Cheng, F., “Converting Waste Coal Fly Ash into Effective Adsorbent for the Removal of Ammonia Nitrogen in Water”, Journal of Materials Science, 53 (18), 12731-12740, 2018.
Depmeier, W., “The Sodalite Family–a Aimple but Versatile Framework Structure”, Reviews in Mineralogy and Geochemistry, 57 (1), 203-240, 2005.
Doušová, B., Grygar, T., Martaus, A., Fuitová, L., Koloušek, D., Machovič, V., “Sorption of AsV on Aluminosilicates Treated with Fe-II Nanoparticles”, Journal of Colloid and Interface Science, 302 (2), 424-431, 2006.
Dakovic, A., Tomasevic-Canovic, M., Rottinghaus, G. E., Matijasevic, S. Sekulic, Z., “Fumonisin B-1 Adsorption to Octadecyldimethylbenzyl Ammonium-Modified Clinoptilolite-Rich Zeolitic Tuff”, Microporous and Mesoporous Materials, 105 (3), 285-290, 2007.
Diaz, R. J., Rosenberg, R., “Spreading Dead Zones and Consequences for Marine Ecosystems”, Science, 321 (5891), 926-929, 2008.
Du, X., Zhang, R., Gan, Z., Bi, J., “Treatment of High Strength Coking Wastewater by Supercritical Water Oxidation”, Fuel, 104 77-82, 2013.
Elizalde-Gonzalez, M. P., Mattusch, J., Wennrich, R., “Application of Natural Zeolites for Preconcentration of Arsenic Species in Water Samples”, Journal of Environmental Monitoring, 3 (1), 22–26, 2001.
Eriksson, E., Auffarth, K., Henze, M., Ledin, A., “Characteristics of Grey Wastewater”, Urban Water, 4 (1), 85-104, 2002.
Ersoy, B., Celik, M. S., “Uptake of Aniline and Nitrobenzene From Aqueous Solution by Organo‐Zeolite”, Environmental Technology, 25 (3), 341-348, 2004.
Farkaš, A., Rožić, M., Barbarić-Mikočević, Ž., “Ammonium Exchange in Leakage Waters of Waste Dumps Using Natural Zeolite from the Krapina Region, Croatia”, Journal of Hazardous Materials, 117 (1), 25-33, 2005.
Frising, T., Leflaive, P., “Extraframework Cation Distributions in X and Y Faujasite Zeolites:A Review”, Microporous and Mesoporous Materials, 114 (1-3), 27-63, 2007.
Tsitsishvili, G. V., Andronikashvili, T. G., Kirov, G.N., Filizova, L. D., Natural Zeolites, E. Horwood, New York, 1992.
Ghiaci, M., Abbaspur, A., Kia, R., Seyedeyn-Azad, F., “Equilibrium Isotherm Studies for the Sorption of Benzene, Toluene, and Phenol onto Organo-Zeolites and as-Synthesized MCM-41”, Separation and Purification Technology, 40 (3), 217-229, 2004.
He, J., Yang, X., Evans, D. G., Duan, X., “New Methods to Remove Organic Templates from Porous Materials”, Materials Chemistry and Physics, 77 (1), 270-275, 2002.
Habuda-Stanić, M., Kuleš, M., Kalajdžić, B., Romić, Ž., “Quality of Groundwater in Eastern Croatia”, The Problem of Arsenic Pollution. Desalination, 210 (1-3), 157-162, 2007.
Huang, H., Xiao, X., Yan, B., Yang, L., “Ammonium Removal from Aqueous Solutions by Using Natural Chinese (Chende) Zeolite as Adsorbent”, Journal of Hazardous Materials, 175 (1-3), 247-252, 2010.
Huang, J., Kankanamge, N. R., Chow, C., Welsh, D. T., Li, T., Teasdale, P. R., “Removing Ammonium from Water and Wastewater Using Cost-Effective Adsorbents: A Review”, Journal of Environmental Sciences, 63, 174-197, 2018.
Kühl, G. H., “Crystallization of Low-Solica Faujasite (SiO2Al2O3∼2.0)”, Zeolites, 7 (5), 451-457, 1987.
Kalló, D., “Applications of Natural Zeolites in Water and Wastewater Treatment”, Reviews in Mineralogy and Geochemistry, 45 (1), 519-550, 2001.
Kuleyin, A., “Removal of Phenol and 4-Chlorophenol by Surfactant-Modified Natural Zeolite”, Journal of Hazardous Materials, 144 (1-2), 307-315, 2007.
Lei, L., Li, X., Zhang, X., “Ammonium Removal from Aqueous Solutions Using Microwave-Treated Natural Chinese Zeolite”, Separation and Purification Technology, 58 (3), 359-366, 2008.
Miller, G. P., Baird, J. K., “Radio Frequency Plasma Decomposition of Ammonia: a Comparison with Radiation Chemistry Using the G Value”, The Journal of Physical Chemistry, 97 (42), 10984-10988, 1993.
Meshko, V., Markovska, L., Mincheva, M., Rodrigues, A. E., “Adsorption of Basic Dyes on Granular Acivated Carbon and Natural Zeolite”, Water Research, 35 (14), 3357-3366, 2001.
Musyoka, N. M., Petrik, L. F., Hums, E., Kuhnt, A., Schwieger, W., “Thermal Stability Studies of Zeolites A and X Synthesized from South African Coal Fly Ash”, Research on Chemical Intermediates, 41 (2), 575-582, 2015.
Montégut, G., Michelin, L., Brendlé, J., Lebeau, B., Patarin, J., “Ammonium and Potassium Removal from Swine Liquid Manure Using Clinoptilolite, Chabazite and Faujasite Zeolites”, Journal of Environmental Management, 167, 147-155, 2016.
Newsam, J. M., “The Zeolite Cage Structure”, Science, 231 (4742), 1093-1099, 1986.
Olson, D. H., “The Crystal Structure of Dehydrated NaX”, Zeolites, 15 (5), 439-443, 1995.
Oter, O., Akcay, H., “Use of Natural Clinoptilolite to Improve Water Quality: Sorption and Selectivity Studies of Lead (II), Copper (II), Zinc (II), and Nickel (II)”, Water Environment Research, 79 (3), 329-335, 2007.
Patterson, R. A., A resident’s Role in Minimising Nitrogen, Phosphorus and Salt in Domestic Wastewater, In On-Site Wastewater Treatment X, 21-24 March 2004 (p. 1), American Society of Agricultural and Biological Engineers, 2004.
Petit, S., Righi, D., Madejová, J., “Infrared Spectroscopy of NH4+-Bearing and Saturated Clay Minerals:A Review of the Study of Layer Charge”, Applied Clay Science, 34 (1-4), 22-30, 2006.
Rožić, M., Cerjan-Stefanović, Š., Kurajica, S., Vančina, V., Hodžić, E., “Ammoniacal Nitrogen Removal from Water by Treatment with Clays and Zeolites”, Water Research, 34 (14), 3675-3681, 2000.
Smith, V. H., Tilman, G. D., Nekola, J. C., “Eutrophication:Impacts of Excess Nutrient Inputs on Freshwater, Marine, and Terrestrial Ecosystems”, Environmental Pollution, 100 (1-3), 179-196, 1999.
Sarioglu, M., “Removal of Ammonium from Municipal Wastewater Using Natural Turkish (Dogantepe) Zeolite”, Separation and Purification Technology, 41 (1), 1-11, 2005.
Sprynskyy, M., Buszewski, B., Terzyk, A. P., Namieśnik, J., “Study of the Selection Mechanism of Heavy Metal (Pb2+, Cu2+, Ni2+, and Cd2+) Adsorption on Clinoptilolite”, Journal of Colloid and Interface Science, 304 (1), 21-28, 2006.
Saltalı, K., Sarı, A., Aydın, M., “Removal of Ammonium Ion from Aqueous Solution by Natural Turkish (Yıldızeli) Zeolite for Environmental Quality”, Journal of Hazardous Materials, 141 (1), 258-263, 2007.
Samatya, S., Yüksel, Ü., Yüksel, M., Kabay, N., “Removal of Fluoride from Water by Metal Ions (Al3+, La3+ and ZrO2+) Loaded Natural Zeolite”, Separation Science and Technology, 42 (9), 2033-2047, 2007.
Takaishi, T., “Ordered Distribution of Na Ions in Dehydrated NaX Zeolite”, Zeolites, 17, 389-392, 1996.
Tiquia, S. M., “Evaluation of Organic Matter and Nutrient Composition of Partially Decomposed and Composted Spent Pig Litter”, Environmental Technology, 24 (1), 97-107, 2003.
Taddeo, R., Prajapati, S., Lepistö, R., “Optimizing Ammonium Adsorption on Natural Zeolite for Wastewaters with High Loads of Ammonium and Solids”, Journal of Porous Materials, 24 (6), 1545-1554, 2017.
Wang, S., Boyjoo, Y., Choueib, A., Zhu, Z. H., “Removal of Dyes from Aqueous Solution Using Fly Ash and Red Mud”, Water Research, 39 (1), 129-138, 2005.
Wingenfelder, U., Furrer, G., Schulin, R., “Sorption of Antimonate by HDTMA-Modified Zeolite”, Microporous and Mesoporous Materials, 95 (1-3), 265-271, 2006.
Wen, D., Ho, Y. S., Tang, X., “Comparative Sorption Kinetic Studies of Ammonium onto Zeolite”, Journal of Hazardous Materials, 133 (1-3), 252-256, 2006.
Wang, S., Terdkiatburana, T., Tadé, M. O., “Adsorption of Cu (II), Pb (II) and Humic Acid on Natural Zeolite Tuff in Single and Binary Systems”, Separation and Purification Technology, 62 (1), 64-70, 2008.
Wang, S., Peng, Y., “Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment”, Chemical Engineering Journal, 156 (1), 11-24, 2010.
Widiastuti, N., Wu, H. W., Ang, H. M., Zhang, D. K., “Removal of Ammonium from Greywater Using Natural Zeolite”, Desalination, 277 (1-3), 15-23, 2011.
Wijesinghe, D. T. N., Dassanayake, K. B., Sommer, S. G., Jayasinghe, G. Y., J. Scales, P., Chen, D., “Ammonium Removal from High-Strength Aqueous Solutions by Australian Zeolite”, Journal of Environmental Science and Health, Part A, 51 (8), 614-625, 2016.
Zheng, H., Han, L., Ma, H., Zheng, Y., Zhang, H., Liu, D., Liang, S., “Adsorption Characteristics of Ammonium Ion by Zeolite 13X”, Journal of Hazardous Materials, 158 (2-3), 577-584, 2008.
Zhao, Y., Zhang, B., Zhang, X., Wang, J., Liu, J., Chen, R., “Preparation of Highly Ordered Cubic NaA Zeolite from Halloysite Mineral for Adsorption of Ammonium Ions”, Journal of Hazardous Materials, 178 (1-3), 658-664, 2010.
Zhao, Y., Wang, L., Zhang, J., Gong, W., Guo, H., “Decomposition of Ammonia by Atmospheric Pressure AC Discharge:Catalytic Effect of the Electrodes”, Catalysis Today, 211, 72-77, 2013.
賴耿陽 編譯,「電漿工學的基礎」,復文書局,1986。
董家齊,陳寬任,奇妙的物質第四態-電漿,科學發展,第354期,pp. 52-59,2002。
徐如人,龐文琴,于吉紅,分子篩與多孔材料化學 (Vol.5),科學出版社,2004.
陳彥志,氧化鎵奈米線及氧化銦顆粒成長及分析,國立成功大學,碩士論文,2004。
孫任賢,微波誘導奈米零價鐵降解四氯乙烯及五氯酚之研究,國立高雄第一科技大學,碩士論文,2005。
李熠,氨氮廢水與含鉻廢水的微波處理工藝,湘潭大學,碩士論文,2008.
林偉智,大面積並聯式電感耦合電漿源之特性量測,國立清華大學,碩士論文,2009。
吳恩育,氧氣電漿處理對於生醫用 Ti-Nb 基合金表層特性之影響研究,國立臺灣大學,博士論文,2009。
黃郁雯,有效控制部分硝化串聯厭氧氨氧化程序處理高氮廢水之研究,國立成功大學,碩士論文,1-171,2012.
訾培建,微波技術處理氨氮廢水的實驗研究,湘潭大學,碩士論文,2012
陳萍澐,含高鹽度石化廢水氨氮之硝化及脫硝研究,國立中山大學,碩士論文,2015。
黃昱齊,以電化學氧法去除工業廢水中氨氮之效率改善,國立中正大學,碩士論文,2017。
黃奕潮,磷酸銨鎂沉澱法處理水中氨氮之研究,國立高雄應用科技大學,碩士論文,2013。
黃駿、陳建中,氨氮廢水處理技術研究進展,環境工程學報,第三卷,第一期
,pp. 65-68,2002。
唐存宏,工業廢水氨氮處理概述,財團法人台灣產業服務基金會,2014。
羅元隆,改變還原洗淨劑對廢水中氨氮值之影響,國立臺北科技大學,碩士論文,2017。
環保署,放流水標準,2017
許國恩,高科技廠氨氮處理技術與法規管制說明,科學工業園區管理局,2018

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊