跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/14 05:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃思文
研究生(外文):HUANG, SIH-WEN
論文名稱:以溶膠凝膠法製備摻雜Li及Mg的ZnCo2O4 薄膜及其特性分析
論文名稱(外文):The Characterization of ZnCo2O4 Thin Films Doped with Li and Mg Using Sol-gel Process
指導教授:陳弘穎陳弘穎引用關係
指導教授(外文):CHEN, HONG-YING
口試委員:陳弘穎楊文都游瑞松
口試委員(外文):CHEN, HONG-YINGYANG, WEIN-DUOYU, RUEI-SUNG
口試日期:2019-06-26
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:95
中文關鍵詞:ZnCo2O4薄膜旋轉塗佈法P型摻雜Li摻雜Mg
外文關鍵詞:ZnCo2O4thin filmsspin coatingP-typeMg dopedLi doped
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究以溶膠凝膠法在玻璃基板上製備摻雜Li及Mg的ZnCo2O4薄膜,以旋轉塗佈法將薄膜塗佈於玻璃基板上,再將試片置於氧氣氣氛下以300℃退火2小時製備成薄膜試片。在摻雜鎂的條件下,由XRD分析顯示,薄膜的組成皆為單一相的ZnCo2O4相;由FE-SEM觀察薄膜表面及橫截面,其中摻雜4%鎂的條件表面最為緻密,薄膜厚度約為107 nm;由UV-Vis分析顯示,薄膜的可見光區最大穿透率約為55-60%,其中薄膜的第一個光學能隙值在2.21-2.39 eV之間,第二個光學能隙值在3.63-3.89 eV之間;由霍爾量測儀分析得知,在摻雜鎂的含量為4%具有最低薄膜電阻值為6.59±3.06 Ωcm,相較於未摻雜鎂之薄膜電阻值,下降約了92%。最後由XPS驗證摻雜鎂含量為4%時高價陽離子Co3+的濃度比例最高即代表產生最多電洞使得電性最佳。在摻雜鋰的條件下,由XRD分析顯示,薄膜的組成皆為單一相的ZnCo2O4相;由FE-SEM觀察薄膜的表面及橫截面,其中摻雜10 %鋰的條件表面最為緻密,其薄膜厚度約為148 nm;由UV-Vis分析顯示,薄膜的可見光區最大穿透率約為25-35%,其中薄膜的第一個光學能隙值在2.13-2.39 eV之間,第二個光學能隙值在3.70-3.89 eV之間;由霍爾量測儀分析得知,在摻雜鋰的含量為10%具有最低薄膜電阻值為22.9±6.01 Ωcm,相較於未摻雜鋰之薄膜電阻值,下降約了72%。最後由XPS驗證摻雜鋰含量為10%時高價陽離子Co3+的濃度比例最高即代表產生最多電洞使得電性最佳。
In this study, the ZnCo2O4 thin films were prepared on glass substrate by sol-gel method. The spin coating derived thin films were annealed at 300℃ in O2 for 2 hours. In the case of the magnesium dopant, single phase of ZnCo2O4 was obtained. The surface and cross section of the film were observed by FE-SEM. The ZnCo2O4 doped with 4% magnesium had the dense morphology, and the thickness was about 107 nm. UV-Vis analysis shows that the maximum transmittance of the visible light region of the film is between 55-60%. The first optical energy gap of the film is between 2.21-2.39 eV, and the second is between 3.63-3.89 eV. According to the Hall effect analyzer the lowest resistivity is 6.59±3.06 Ωcm when the ZnCo2O4 doped with 4% magnesium, which is about 92% lower than that of the undoped magnesium film. Finally, it is verified by XPS that the highest concentration ratio of Co3+ when the doping magnesium content is 4%, which means that the most holes are generated to optimize the electrical properties.
In the case of the lithium dopant, single phase of ZnCo2O4 was obtained. The surface and cross section of the film were observed by FE-SEM. The ZnCo2O4 doped with 10% lithium had the dense morphology, and the thickness was about 148 nm. UV-Vis analysis shows that the maximum transmittance of the visible light region of the film is between 25-35%. The first optical energy gap of the film is between 2.13-2.39 eV, and the second is between 3.70-3.89 eV. According to the Hall effect analyzer the lowest resistivity is 2.29±6.01 Ωcm, which is about 72% lower than that of the undoped lithium film. Finally, it is verified by XPS that the highest concentration ratio of Co3+ when the doping lithium content is 10%, which means that the most holes are generated to optimize the electrical properties.

摘要 I
ABSTRACT II
致謝 IV
總目錄 V
表目錄 VIII
圖目錄 IX
第 1 章 緒論 1
1.1 尖晶石結構 1
1.2 透明導電氧化物 2
1.3 溶膠-凝膠法 3
1.4 溶膠-凝膠法製備薄膜的方法 5
1.5 自摻雜效應 8
1.6 研究動機與目的 9
第 2 章 文獻回顧 10
2.1 製備ZnCo2O4的方法 10
2.2 製備ZnCo2O4粉末的方法 11
2.2.1 共同沉澱法 11
2.2.2 水熱法 11
2.2.3 熔鹽法 12
2.3 製備ZnCo2O4薄膜的方法 13
2.3.1 電化學合成法 13
2.3.2 溶膠-凝膠法 13
2.3.3 脈衝雷射沉積 14
2.3.4 磁控濺鍍法 14
第 3 章 實驗流程 15
3.1 實驗流程圖 15
3.2 製備ZnCo2O4薄膜 16
3.2.1 前驅液及薄膜試片之製備 16
3.2.2 氣氛爐退火及薄膜分析 16
3.2.3 製備Li及Mg摻雜之ZnCo2O4薄膜 17
3.3 ZnCo2O4薄膜檢測分析 18
3.3.1 X光繞射分析儀 18
3.3.2 場發射掃描式電子顯微鏡 20
3.3.3 紫外光-可見光吸收光譜儀 21
3.3.4 霍爾量測儀 23
3.3.5 X光光電子能譜儀 24
第 4 章 結果與討論 25
4.1 ZnCo2O4摻雜Mg之特性分析 25
4.1.1 結晶性分析 25
4.1.2 微結構分析 29
4.1.3 光學特性分析 33
4.1.4 電性分析 39
4.1.5 材料元素構成分析 41
4.2 ZnCo2O4摻雜Li之特性分析 54
4.2.1 結晶性分析 54
4.2.2 微結構分析 57
4.2.3 光學特性分析 60
4.2.4 電性分析 65
4.2.5 材料元素構成分析 67
第 5 章 結論 75
參考文獻 77
著作 80
簡歷 81


[1]C. Biagioni, M. Pasero, The systematics of the spinel-type minerals: An overview, American Mineralogist 99(7) (2014) 1254-1264.
[2]T.R. Paudel, A. Zakutayev, S. Lany, M. d'Avezac, A. Zunger, Doping Rules and Doping Prototypes in A2BO4 Spinel Oxides, Advanced Functional Materials 21(23) (2011) 4493-4501.
[3]S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, K.Y. Rajpure, C.H. Bhosale, Synthesis and Characterization of Spray Deposited Nickel-Zinc Ferrite Thin Films, Energy Procedia 54 (2014) 599-605.
[4]M. Gratzel, Photoelectrochemical cells, Nature 414(6861) (2001) 338-344.
[5]C.G. Granqvist, A. Hultaker, Transparent and conducting ITO films: new developments and applications, Thin Solid Films 411(1) (2002) 1-5.
[6] N.I. Kovtyukhova, E.V. Buzaneva, C.C. Waraksa, B.R. Martin, T.E. Mallouk, Surface sol-gel synthesis of ultrathin semiconductor films, Chem. Mat. 12(2) (2000) 383-389.
[7]Y. Rahaq, H. Wang, V. Kumar, Fabricating the solution-processable inverted photovoltaic devices by the dip-coating method, Organic Electronics 15(5) (2014) 984-990.
[8]B. Torres, M. Campo, A. Ureña, J. Rams, Thermal spray coatings of highly reinforced aluminium matrix composites with sol–gel silica coated SiC particles, Surface and Coatings Technology 201(16-17) (2007) 7552-7559.
[9]P.C. Tulio, I.A. Carlos, Effects of SiC and Al2O3 particles on the electrodeposition of Zn, Co and ZnCo. I. Electrodeposition in the absence of SiC and Al2O3, Journal of Applied Electrochemistry 39(2) (2008) 283-291.
[10]D.W. Schubert, Spin coating as a method for polymer molecular weight determination, Polym. Bull. 38(2) (1997) 177-184.
[11]Y. Shi, P.F. Ndione, L.Y. Lim, D. Sokaras, T.-C. Weng, A.R. Nagaraja, A.G. Karydas, J.D. Perkins, T.O. Mason, D.S. Ginley, A. Zunger, M.F. Toney, Self-Doping and Electrical Conductivity in Spinel Oxides: Experimental Validation of Doping Rules, Chem. Mat. 26(5) (2014) 1867-1873.
[12]X. Xiao, B. Peng, L. Cai, X. Zhang, S. Liu, Y. Wang, The high efficient catalytic properties for thermal decomposition of ammonium perchlorate using mesoporous ZnCo2O4 rods synthesized by oxalate co-precipitation method, Sci Rep 8(1) (2018) 7571.


[13]D.M. Alqahtani, C. Zequine, C.K. Ranaweera, K. Siam, P.K. Kahol, T.P. Poudel, S.R. Mishra, R.K. Gupta, Effect of metal ion substitution on electrochemical properties of cobalt oxide, Journal of Alloys and Compounds 771 (2019) 951-959.
[14]M.V. Reddy, K.Y.H. Kenrick, T.Y. Wei, G.Y. Chong, G.H. Leong, B.V.R. Chowdari, Nano-ZnCo2O4 Material Preparation by Molten Salt Method and Its Electrochemical Properties for Lithium Batteries, J. Electrochem. Soc. 158(12) (2011) A1423-A1430.
[15]T.W. Kim, M.A. Woo, M. Regis, K.S. Choi, Electrochemical Synthesis of Spinel Type ZnCo2O4 Electrodes for Use as Oxygen Evolution Reaction Catalysts, J Phys Chem Lett 5(13) (2014) 2370-4.
[16]X.L. Wen, Z. Chen, E.H. Liu, X. Lin, Structural and magnetic characterization of ZnCo2O4 thin film prepared by pulsed laser deposition, Appl. Surf. Sci. 357 (2015) 1212-1216.
[17]Z. Chen, X.L. Wen, L.W. Niu, M. Duan, Y.J. Zhang, X.L. Dong, R.L. Zhang, C.L. Chen, Transport and magnetic properties of ZnCo2O4/Si heterostructures grown by radio frequency magnetron sputtering, Thin Solid Films 573 (2014) 90-94.
[18]H.-J. Lee, S.-Y. Jeong, C.R. Cho, C.H. Park, Study of diluted magnetic semiconductor: Co-doped ZnO, Applied Physics Letters 81(21) (2002) 4020-4022.
[19]H. Behzad, F.E. Ghodsi, Effect of Zn content on the structural, optical, electrical and supercapacitive properties of sol-gel derived ZnCo2O4 nanostructured thin films, J. Mater. Sci.-Mater. Electron. 27(6) (2016) 6096-6107.
[20]D.O. Scanlon, G.W. Watson, Band gap anomalies of the ZnM2(III)O4 (M(III)=Co, Rh, Ir) spinels, Phys Chem Chem Phys 13(20) (2011) 9667-75.
[21]M.N. Amini, H. Dixit, R. Saniz, D. Lamoen, B. Partoens, The origin of p-type conductivity in ZnM2O4 (M = Co, Rh, Ir) spinels, Phys Chem Chem Phys 16(6) (2014) 2588-96.
[22]M. Dekkers, G. Rijnders, D.H.A. Blank, ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc-d6-transition metal oxide, Applied Physics Letters 90(2) (2007) 021903.
[23]S. Vijayakumar, S. Nagamuthu, S.-H. Lee, K.-S. Ryu, Porous thin layered nanosheets assembled ZnCo2O4 grown on Ni-foam as an efficient electrode material for hybrid supercapacitor applications, International Journal of Hydrogen Energy 42(5) (2017) 3122-3129.

[24]X. Han, F. Liao, Y. Zhang, H. Chen, C. Xu, Template-free synthesis of mesoporous ZnCo2O4 nanosheets and quasi-cubes via a simple solvothermal route, Materials Letters 217 (2018) 56-59.
[25]N. Liu, P. Tao, C. Jing, W. Huang, X. Zhang, M. Wu, J. Lei, L. Tang, A facile fabrication of nanoflower-like Co3O4 catalysts derived from ZIF-67 and their catalytic performance for CO oxidation, Journal of Materials Science 53(21) (2018) 15051-15063.
[26]T. Liu, W. Wang, M. Yi, Q. Chen, C. Xu, D. Cai, H. Zhan, Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries, Chemical Engineering Journal 354 (2018) 454-462.
[27]L. Xie, Y. Liu, H. Bai, C. Li, B. Mao, L. Sun, W. Shi, Core-shell structured ZnCo2O4@ZnWO4 nanowire arrays on nickel foam for advanced asymmetric supercapacitors, J Colloid Interface Sci 531 (2018) 64-73.
[28]X.C. Xiao, G.F. Wang, M.M. Zhang, Z.Z. Wang, R.J. Zhao, Y.D. Wang, Electrochemical performance of mesoporous ZnCo2O4 nanosheets as an electrode material for supercapacitor, Ionics 24(8) (2018) 2435-2443.
[29]T. Ramachandran, F. Hamed, Electrochemical performance of plate-like zinc cobaltite electrode material for supercapacitor applications, J. Phys. Chem. Solids 121 (2018) 93-101.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊