|
[1]C. Biagioni, M. Pasero, The systematics of the spinel-type minerals: An overview, American Mineralogist 99(7) (2014) 1254-1264. [2]T.R. Paudel, A. Zakutayev, S. Lany, M. d'Avezac, A. Zunger, Doping Rules and Doping Prototypes in A2BO4 Spinel Oxides, Advanced Functional Materials 21(23) (2011) 4493-4501. [3]S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, K.Y. Rajpure, C.H. Bhosale, Synthesis and Characterization of Spray Deposited Nickel-Zinc Ferrite Thin Films, Energy Procedia 54 (2014) 599-605. [4]M. Gratzel, Photoelectrochemical cells, Nature 414(6861) (2001) 338-344. [5]C.G. Granqvist, A. Hultaker, Transparent and conducting ITO films: new developments and applications, Thin Solid Films 411(1) (2002) 1-5. [6] N.I. Kovtyukhova, E.V. Buzaneva, C.C. Waraksa, B.R. Martin, T.E. Mallouk, Surface sol-gel synthesis of ultrathin semiconductor films, Chem. Mat. 12(2) (2000) 383-389. [7]Y. Rahaq, H. Wang, V. Kumar, Fabricating the solution-processable inverted photovoltaic devices by the dip-coating method, Organic Electronics 15(5) (2014) 984-990. [8]B. Torres, M. Campo, A. Ureña, J. Rams, Thermal spray coatings of highly reinforced aluminium matrix composites with sol–gel silica coated SiC particles, Surface and Coatings Technology 201(16-17) (2007) 7552-7559. [9]P.C. Tulio, I.A. Carlos, Effects of SiC and Al2O3 particles on the electrodeposition of Zn, Co and ZnCo. I. Electrodeposition in the absence of SiC and Al2O3, Journal of Applied Electrochemistry 39(2) (2008) 283-291. [10]D.W. Schubert, Spin coating as a method for polymer molecular weight determination, Polym. Bull. 38(2) (1997) 177-184. [11]Y. Shi, P.F. Ndione, L.Y. Lim, D. Sokaras, T.-C. Weng, A.R. Nagaraja, A.G. Karydas, J.D. Perkins, T.O. Mason, D.S. Ginley, A. Zunger, M.F. Toney, Self-Doping and Electrical Conductivity in Spinel Oxides: Experimental Validation of Doping Rules, Chem. Mat. 26(5) (2014) 1867-1873. [12]X. Xiao, B. Peng, L. Cai, X. Zhang, S. Liu, Y. Wang, The high efficient catalytic properties for thermal decomposition of ammonium perchlorate using mesoporous ZnCo2O4 rods synthesized by oxalate co-precipitation method, Sci Rep 8(1) (2018) 7571.
[13]D.M. Alqahtani, C. Zequine, C.K. Ranaweera, K. Siam, P.K. Kahol, T.P. Poudel, S.R. Mishra, R.K. Gupta, Effect of metal ion substitution on electrochemical properties of cobalt oxide, Journal of Alloys and Compounds 771 (2019) 951-959. [14]M.V. Reddy, K.Y.H. Kenrick, T.Y. Wei, G.Y. Chong, G.H. Leong, B.V.R. Chowdari, Nano-ZnCo2O4 Material Preparation by Molten Salt Method and Its Electrochemical Properties for Lithium Batteries, J. Electrochem. Soc. 158(12) (2011) A1423-A1430. [15]T.W. Kim, M.A. Woo, M. Regis, K.S. Choi, Electrochemical Synthesis of Spinel Type ZnCo2O4 Electrodes for Use as Oxygen Evolution Reaction Catalysts, J Phys Chem Lett 5(13) (2014) 2370-4. [16]X.L. Wen, Z. Chen, E.H. Liu, X. Lin, Structural and magnetic characterization of ZnCo2O4 thin film prepared by pulsed laser deposition, Appl. Surf. Sci. 357 (2015) 1212-1216. [17]Z. Chen, X.L. Wen, L.W. Niu, M. Duan, Y.J. Zhang, X.L. Dong, R.L. Zhang, C.L. Chen, Transport and magnetic properties of ZnCo2O4/Si heterostructures grown by radio frequency magnetron sputtering, Thin Solid Films 573 (2014) 90-94. [18]H.-J. Lee, S.-Y. Jeong, C.R. Cho, C.H. Park, Study of diluted magnetic semiconductor: Co-doped ZnO, Applied Physics Letters 81(21) (2002) 4020-4022. [19]H. Behzad, F.E. Ghodsi, Effect of Zn content on the structural, optical, electrical and supercapacitive properties of sol-gel derived ZnCo2O4 nanostructured thin films, J. Mater. Sci.-Mater. Electron. 27(6) (2016) 6096-6107. [20]D.O. Scanlon, G.W. Watson, Band gap anomalies of the ZnM2(III)O4 (M(III)=Co, Rh, Ir) spinels, Phys Chem Chem Phys 13(20) (2011) 9667-75. [21]M.N. Amini, H. Dixit, R. Saniz, D. Lamoen, B. Partoens, The origin of p-type conductivity in ZnM2O4 (M = Co, Rh, Ir) spinels, Phys Chem Chem Phys 16(6) (2014) 2588-96. [22]M. Dekkers, G. Rijnders, D.H.A. Blank, ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc-d6-transition metal oxide, Applied Physics Letters 90(2) (2007) 021903. [23]S. Vijayakumar, S. Nagamuthu, S.-H. Lee, K.-S. Ryu, Porous thin layered nanosheets assembled ZnCo2O4 grown on Ni-foam as an efficient electrode material for hybrid supercapacitor applications, International Journal of Hydrogen Energy 42(5) (2017) 3122-3129.
[24]X. Han, F. Liao, Y. Zhang, H. Chen, C. Xu, Template-free synthesis of mesoporous ZnCo2O4 nanosheets and quasi-cubes via a simple solvothermal route, Materials Letters 217 (2018) 56-59. [25]N. Liu, P. Tao, C. Jing, W. Huang, X. Zhang, M. Wu, J. Lei, L. Tang, A facile fabrication of nanoflower-like Co3O4 catalysts derived from ZIF-67 and their catalytic performance for CO oxidation, Journal of Materials Science 53(21) (2018) 15051-15063. [26]T. Liu, W. Wang, M. Yi, Q. Chen, C. Xu, D. Cai, H. Zhan, Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries, Chemical Engineering Journal 354 (2018) 454-462. [27]L. Xie, Y. Liu, H. Bai, C. Li, B. Mao, L. Sun, W. Shi, Core-shell structured ZnCo2O4@ZnWO4 nanowire arrays on nickel foam for advanced asymmetric supercapacitors, J Colloid Interface Sci 531 (2018) 64-73. [28]X.C. Xiao, G.F. Wang, M.M. Zhang, Z.Z. Wang, R.J. Zhao, Y.D. Wang, Electrochemical performance of mesoporous ZnCo2O4 nanosheets as an electrode material for supercapacitor, Ionics 24(8) (2018) 2435-2443. [29]T. Ramachandran, F. Hamed, Electrochemical performance of plate-like zinc cobaltite electrode material for supercapacitor applications, J. Phys. Chem. Solids 121 (2018) 93-101.
|