跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/15 12:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:温賀淳
研究生(外文):WEN,HE-CHUN
論文名稱:可撓式水合氧化釕固態超電容的製備及其電容特性之研究
論文名稱(外文):Preparation and Characterization of Hydrous Ruthenium Oxide Solid State Flexible Supercapacitors
指導教授:謝達華謝達華引用關係
指導教授(外文):XIE,DA-HUA
口試委員:陳澄河王怡仁何國賢
口試委員(外文):CHEN,CHENG-HEWANG,YI-RENHE,GUO-XIAN
口試日期:2019-06-28
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:92
中文關鍵詞:水合氧化釕電解質複合膜定電位電化學沉積
外文關鍵詞:Hydrated Ruthenium oxideElectrolyte composite membraneElectrochemical deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是以沉積銦錫氧化物之聚對苯二甲酸乙二酯 (PET/ITO)為電極基材,三氯化釕為鍍液,利用三極式定電位電化學沉積法,製備水合氧化釕(RuO2)電極,同時以硫酸鈉為電解液,交聯聚乙烯醇(PVA)/黏土(clay)為電解質複合膜,利用三明治構裝技術組成 RuO2|PVA/clay|RuO2 可撓式對稱型電化學電容(RuO2|PVA/clay|RuO2 FSC),並藉由場發射掃描式電子、X-光繞射儀、X-光電子光譜與恆電位電流儀等之分析,探討組成、結構與交聯等對 RuO2|PVA /clay |RuO2-FSC電容特性的影響及相互的關係。結果顯示, 水合RuO2會緊密的沉積在 PET/ITO表面,RuO2 電極比電容(Csp)值會隨負沉積電位的增加而增加,當沉積電位在 -0.6 V時,RuO2電極有最高的Csp值(141.63 F/g ),掃描速率為 50 mV/s,實部阻抗為 43.5 Ω。RuO2電極經100°C退火,因水合RuO2原子的重新排列,進而提升其 Csp值(315.61 F/g)。RuO2|PVA/clay|RuO2 FSC,比電容值為24.51 F/g,阻抗為68.44 Ω,能量密度與功率密度分別為 17.647 Wh/Kg 與 80.211 kW/Kg。經5000次循環後,RuO2|PVA/clay|RuO2 FSC電容保留率仍有89 %,實部阻抗為68.44 Ω,以彎曲角度30°進行100次撓曲後,其電容保留率仍有91%。
In this study, ruthenium oxide (RuO2)-polyethylene terephthalate deposited with indium tin oxide (PET/ITO)|polyvinyl alcohol (PVA)/clay|RuO2 -(PET/ITO) flexible symmetry electrochemical supercapacitors were fabricated by using sandwich assembling technique, where RuO2-PET/ITO, cross-linked PVA/clay, and sodium sulphate acted as the electrode, the electrolyte composite membrane, and the electrolyte, respectively. RuO2-PET/ITO electrode was prepared by three-pole constant potential electrochemical deposition method, in which PET/ITO and antimony trichloride used as the substrate the plating solution. The structure of the sample was characterized by Field emission gun scanning electron microscope (FE-SEM), Thermogravimetric analysis (TGA) and Multi-function X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy. Electrochemical properties were further carried out by means of potentiostat/Galvanostat and Leak current tester. Results showed that the hydrated RuO2 is tightly bonded to the surface of PET/ITO substrate. The specific capacitance (Csp) of RuO2 electrode increased with the increasing negative electrical potential. When the potential is -0.6 V, the RuO2 electrode has the highest value of Csp (141.63 F/g), as the scanning rate is 50 mV/s, the real part of resistance is 43.5 Ω. As RuO2 electrode is annealed at 100 °C, the value of Csp (315.61 F/g) is increased due to the rearrangement of the hydrated RuO2 atom. As for electrical property analysis, RuO2|PVA/clay |RuO2 flexible supercapacitor has a specific capacitance of 24.51 F/g, the impedance is 68.44 Ω, and the energy density and power density are 17.647 Wh/Kg and 80.211 kW/Kg. After 5000 cycles test, the capacitance retention rate of RuO2|PVA/clay |RuO2 flexible supercapacitor is still 89%, the real part of impedance is 68.44 Ω. After bending 100 times at 30° bending angle, the capacitance retention rate of RuO2|PVA/clay |RuO2 flexible supercapacitor is also still 91%.
摘要 Ⅰ
英文摘要 Ⅲ
致謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 5
2.1 儲能元件簡介 5
2.2 超級電容器(Supercapacitor) 7
2.3電化學電容器電解液的種類 13
2.4電化學電容器電極材料種類 14
2.5電化學沉積之簡介 25
2.6 EIS (Electrochemical impedance spectroscopy)理論 27
2.7電解質簡介 37
2.8聚乙烯醇簡介[53] 42
第三章 實驗程序 43
3.1 實驗相關藥品 43
3.2 儀器設備 46
3.3 實驗步驟 49
第四章 結果與討論 57
4.1 PVA/clay複合膜表面形態 57
4.2 PVA/clay複合膜結晶性分析 59
4.3 RuO2電極之電容特性分析 61
4.4 RuO2電極物性分析 69
4.5 RuO2電極退火 74
4.6 RuO2|PVA/clay|RuO2元件之電容特性 76
第五章 結論 83
第六章 參考文獻 85


[1] E. Guelpa, A. Bischi, V. Verda, M. Chertkov, H. Lund, Energy (2019).
[2] D. Larcher, J.M. Tarascon, Nature Chemistry 7 (2014) 19.
[3] M. Sathiya, A.M. Abakumov, D. Foix, G. Rousse, K. Ramesha, M. Saubanère, M.L. Doublet, H. Vezin, C.P. Laisa, A.S. Prakash, D. Gonbeau, G. VanTendeloo, J.M. Tarascon, Nature Materials 14 (2014) 230.
[4] M. Sathiya, G. Rousse, K. Ramesha, C.P. Laisa, H. Vezin, M.T. Sougrati, M.L. Doublet, D. Foix, D. Gonbeau, W. Walker, A.S. Prakash, M. Ben Hassine, L. Dupont, J.M. Tarascon, Nature Materials 12 (2013) 827.
[5] M. Yang, Y. Zhong, J. Bao, X. Zhou, J. Wei, Z. Zhou, Journal of Materials Chemistry A 3(21) (2015) 11387-11394.
[6] C. Zhang, H. Zhou, X. Yu, D. Shan, T. Ye, Z. Huang, Y. Kuang, RSC Advances 4(22) (2014).
[7] H. Zhang, G. Cao, Y. Yang, Z. Gu, Carbon 46(1) (2008) 30-34.
[8] A.K. Shukla, A.S. Aricò, V. Antonucci, Renewable and Sustainable Energy Reviews 5(2) (2001) 137-155.
[9] L.-F. Chen, Z.-H. Huang, H.-W. Liang, W.-T. Yao, Z.-Y. Yu, S.-H. Yu, Energy & Environmental Science 6(11) (2013) 3331-3338.
[10] Z. Wang, H. Wang, B. Liu, W. Qiu, J. Zhang, S. Ran, H. Huang, J. Xu, H. Han, D. Chen, G. Shen, ACS Nano 5(10) (2011) 8412-8419.
[11] J. Wen, Z. Zhou, Materials Chemistry and Physics 98(2) (2006) 442-446.
[12] J. Zheng, P. J. Cygan, R. Jow, Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors, 1995.
[13] C.C. Kuo, A Neural Network Based Particle Swarm Optimization for the Transformers Connections of a Primary Feeder Considering Multi-objective Programming, in: J. Wang, Z. Yi, J.M. Zurada, B.-L. Lu, H. Yin (Eds.) Advances in Neural Networks - ISNN 2006, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 1317-1323.
[14] M. Toupin, T. Brousse, D. Bélanger, Chemistry of Materials 16(16) (2004) 3184-3190.
[15] D. Galizzioli, F. Tantardini, S. Trasatti, Journal of Applied Electrochemistry 4(1) (1974) 57-67.
[16] S. Trasatti, G. Buzzanca, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 29(2) (1971) A1-A5.
[17] P. Simon, Y. Gogotsi, Nature Materials 7 (2008) 845.
[18] G. Crabtree, E. Kócs, L. Trahey, MRS Bulletin 40(12) (2015) 1067-1078.
[19] Y. Baolian, Chinese Journal of Power Sources (1998).
[20] A.F.B. John.R Miller, The Electrochemical Society Interface (2008).
[21] H. joel, ExtremeTech (2014).
[22] Ltd, Murata Manufacturing co. (1950).
[23] T.-C. Wen, C.C. Hu, Hydrogen and Oxygen Evolution on Ru-Ir Binary Oxides, 1992.
[24] N. Yoshida, Y. Yamada, S.-i. Nishimura, Y. Oba, M. Ohnuma, A. Yamada, The Journal of Physical Chemistry C 117(23) (2013) 12003-12009.
[25] 陳奕良, 國立高學應用科技大學 (2015).
[26] P.E. Marszalek, Y.F. Dufrêne, Chemical Society Reviews 41(9) (2012) 3523-3534.
[27] X. Liu, P.G. Pickup, Journal of Power Sources 176(1) (2008) 410-416.
[28] F. Pico, J. Ibañez, M.A. Lillo-Rodenas, A. Linares-Solano, R.M. Rojas, J.M. Amarilla, J.M. Rojo, Journal of Power Sources 176(1) (2008) 417-425.
[29] M. Inagaki, H. Konno, O. Tanaike, Journal of Power Sources 195(24) (2010) 7880-7903.
[30] X. Liu, P.G. Pickup, Journal of Solid State Electrochemistry 14(2) (2009) 231.
[31] J.-C. Chou, Y.-L. Chen, M.-H. Yang, Y.-Z. Chen, C.-C. Lai, H.-T. Chiu, C.-Y. Lee, Y.-L. Chueh, J.-Y. Gan, Journal of Materials Chemistry A 1(31) (2013) 8753-8758.
[32] D.P. Dubal, G.S. Gund, R. Holze, H.S. Jadhav, C.D. Lokhande, C.-J. Park, Electrochimica Acta 103 (2013) 103-109.
[33] P.R. Deshmukh, N.M. Shinde, S.V. Patil, R.N. Bulakhe, C.D. Lokhande, Chemical Engineering Journal 223 (2013) 572-577.
[34] K.Y.T. E.V.Jelenkovic, Journal of Vaccum Science and Technology B (2014) 22.
[35] X.G. D. Zhao, Y. Gao, and F.Gao, ACS Applied Materials & Interfaces (2012) 4,5583.
[36] Y. Luo, D. Kong, Y. Jia, J. Luo, Y. Lu, D. Zhang, K. Qiu, C.M. Li, T. Yu, RSC Advances 3(17) (2013) 5851-5859.
[37] G.Z. Yang, H.W. Song, H. Cui, Y.C. Liu, C.X. Wang, Nano Energy 2(5) (2013) 579-585.
[38] T. Liu, W.G. Pell, B.E. Conway, Electrochimica Acta 42(23) (1997) 3541-3552.
[39] R. Jow, Electrochemical Capacitors Using Hydrous Ruthenium Oxide and Hydrogen Inserted Ruthenium Oxide, 1998.
[40] J.P. Zheng, R. Jow, A New Charge Storage Mechanism for Electrochemical Capacitors and Charge Storage Density Vs. Crystalline Structure of Metal Oxides, 2011.
[41] B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (POD) (1999).
[42] W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, Y. Takasu, The Journal of Physical Chemistry B 109(15) (2005) 7330-7338.
[43] R.T.S. I.D.Raistrick, S.Srinivasan,S.Wagner,H.Wroblowa, Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage(1987) (1987).
[44] L.Z. G.Wang, Zhang Journal Chemical Society Reviews (2012) 41,797.
[45] Tetsuhou, Xuite (2007).
[46] 陳. 鄒宏基, 格致圖書公司 (1995).
[47] R.J.A. Silbey, Robert A./Bawendi, Moungi G., Physical Chemistry (1913).
[48] D. Fish, I.M. Khan, E. Wu, J. Smid, British Polymer Journal 20(3) (1988) 281-288.
[49] D.F. Shriver, B.L. Papke, M.A. Ratner, R. Dupon, T. Wong, M. Brodwin, Solid State Ionics 5 (1981) 83-88.
[50] D.E.F. P.V.Wright, J.M.Parke, Polymer (1973).
[51] P.V. Wright, British Polymer Journal 7(5) (1975) 319-327.
[52] C.-C. Yang, Journal of Power Sources 109(1) (2002) 22-31.
[53] C.-C. Yang, Y.-J. Lee, S.-J. Chiu, K.-T. Lee, W.-C. Chien, C.-T. Lin, C.-A. Huang, Journal of Applied Electrochemistry 38(10) (2008) 1329.
[54] S. Chaduang, W. Laoatiman, S. Kheawhom, Improving Performance and Cyclability of Printed Flexible Zinc-Air Batteries Using Carbopol Gel Electrolyte, 2017.
[55] 蔡春恩, 台灣科技大學博士學位論文 (2011).
[56] M. Boehme, C. Charton, Surface and Coatings Technology 200(1) (2005) 932-935.
[57] K.-C. Huang, C.-H. Lin, A.K. S, T.-Y. Huang, J.-Y. Lin, F.-G. Tseng, C.-K. Hsieh, Journal of Power Sources 417 (2019) 108-116.
[58] 謝達華, TW201400540A (2014).
[59] S. Hassan, M. Suzuki, S. Mori, A.A. El-Moneim, RSC Advances 4(39) (2014) 20479-20488.
[60] W. Y.G., Z.D.Wang,Y.Y.Xia, Electrochimica Acta (2005) 50,28,5641.
[61] J.M. Sieben, E. Morallón, D. Cazorla-Amorós, Energy 58 (2013) 519-526.
[62] D.J. Morgan, Surface and Interface Analysis 47(11) (2015) 1072-1079.
[63] W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan, C.S. Ozkan, Sci Rep 4 (2014) 4452.
[64] S. Kong, K. Cheng, T. Ouyang, Y. Gao, K. Ye, G. Wang, D. Cao, Electrochimica Acta 246 (2017) 433-442.
[65] Y.-Y. Liang, H.L. Li, X.-G. Zhang, Journal of Power Sources 173(1) (2007) 599-605.
電子全文 電子全文(網際網路公開日期:20240718)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top