跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/19 19:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴瑋志
研究生(外文):DAI, WEI-ZHI
論文名稱:以溶膠凝膠法製備Ni摻雜的ZnCo2O4薄膜與其光電特性研究
論文名稱(外文):Preparation of sol-gel derived Ni-doped ZnCo2O4 thin films and their optoelectronic properties
指導教授:陳弘穎陳弘穎引用關係
指導教授(外文):Chen, Hong-Ying
口試委員:陳弘穎游瑞松楊文都
口試委員(外文):Chen, Hong-YingYu, Ruei-SungYang, Wein-Duo
口試日期:2019-06-26
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:91
中文關鍵詞:ZnCo2O4薄膜溶膠凝膠法Ni摻雜載子濃度反位缺陷
外文關鍵詞:ZnCo2O4thin-filmssol-gel methodNi-dopingcarrier concentrationanti-site defects
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究以溶膠凝膠法製備Ni摻雜之ZnCo2O4薄膜,以旋轉塗佈法將前驅液塗佈於玻璃基板上,再將薄膜置於氧氣氣氛下以400℃條件下進行退火2小時。由XRD分析結果,在0%~120% Ni摻雜可成功製備相ZnCo2O4相薄膜;150%則為ZnCo2O4及NiO的混合相;另外180%及200%則轉變為純NiO相;再計算各條件之晶格常數其大小均符合其成相,並發現Ni摻雜會導致大小變化。經FE-SEM觀察表面形貌其Ni摻雜0%~150%均為緻密且平整的表面,180%及200%因塗佈效果不佳而發現裂紋。以UV-vis分析得知在0%~120%可見光區最大穿透度約30~56%,光學能隙則有兩段分別為2.33eV~2.53eV及3.61eV~3.90eV;150%~200%則為NiO之吸收特性且穿透率回升至60~65%,能隙僅一段為4.01eV~4.04eV。此外,ZnCo2O4相在70%~120%Ni摻雜擁有較高的導電性質,其中90% Ni摻雜量測出最佳的電性為載子濃度(1.24±0.19)1018 cm-3、電阻率3.39±0.01 Ωcm及導電度(2.95±0.01)10-1 S/cm。最後由X光光電子能譜儀分析1%~100%Ni摻雜之條件,發現Co 2p3/2及Ni 2p3/2軌域3+離子含量影響反位缺陷的生成量,使得多數載子的數量變化並影響電性;Zn 2p及O1s則顯示出ZnCo2O4之特徵型態。
In this study, the Ni-doped ZnCo2O4 thin-films prepared by sol-gel method. The precursor solution was coated on glass substrate by a spin coating method, the were annealed at 400°C for 2 hours under an oxygen. The XRD results, ZnCo2O4 phase can be successfully prepared by Ni-doping 0%~120%. The 150% is ZnCo2O4 and NiO phases. The additional 180% and 200% was converted to pure NiO phases. the lattice constant of condition were calculated according to phases, and that found Ni-doping causes size change.The surface morphology of the surface was observed by FE-SEM. The Ni-doped 0%~150% were dense and flat surfaces, and 180% and that 200% were found to be cracked due to poor coating. According to UV-vis analysis, the maximum transmittance of Ni-doped 0%~120% visible light region were about 30~56%, and the band gap respectively of 2.33eV~2.53eV and 3.61eV~3.90eV. The Ni-doped 150%~200% were the Optical characteristics of NiO the maximum penetration to 60~65%, and the band gap of 4.01eV~4.04eV. In addition, the ZnCo2O4 phase has a high conductivity in Ni-doping 70%~120%, and the best electrical conductivity of Ni-doped 90% was carrier concentration (1.24±0.19)1018 cm-3, and the resistance was 3.39±0.01 Ωcm, and the conductivity was (2.95±0.01)10-1 S/cm.Finally, the conditions of Ni-doped 1%~100% were analyzed by X-ray photoelectron spectroscopy. It was found that the 3+ ion content of Co 2p3/2 and Ni 2p3/2 orbital affected the amount of anti-site defects, which made Majority carriers The quantity changes and affects the electrical properties. The Zn 2p and O1s orbital show characteristic of ZnCo2O4.
摘要 I
Abstract II
致謝 III
總目錄 IV
表目錄 VII
圖目錄 IX
第 1 章 緒論 1
1.1尖晶石結構(spinel structure) 1
1.2正尖晶石(normal spinel)與反尖晶石(inverse spinel)結構 4
1.3 ZnCo2O4化合物 6
1.4溶膠-凝膠法(Sol-Gel) 8
1.5溶膠-凝膠法應用於薄膜製備的方式 11
1.5.1浸塗法(Dip-coating) 11
1.5.2旋轉塗佈法(Spin-Coating) 12
1.5.3噴塗法(Spray-coating) 14
1.5.4電沉積法(Electrodeposition) 15
1.6自摻雜效應(Self-doping effect) 16
1.7研究動機與目的 19
第 2 章 文獻回顧 20
2.1 ZnCo2O4的製備方式 20
2.2 ZnCo2O4粉末的製備方式 20
2.2.1共同沉澱法(Co-precipitation) 20
2.2.2微乳化法(Microemulsions) 21
2.2.3水熱法(hydrothermal) 22
2.2.4熔鹽法(Molten Salt) 22
2.3 ZnCo2O4薄膜的製備方式 23
2.3.1電化學合成法(electrochemical synthesis) 23
2.3.2溶膠-凝膠法(Sol-Gel) 24
2.3.3脈衝雷射沉積法(Pulsed Laser Deposition,PLD) 25
2.3.4磁控濺鍍法(Magnetron Sputtering) 27
第 3 章 實驗方法 29
3.1實驗流程圖 29
3.2 ZnCo2O4薄膜製備 30
3.2.1鎳摻雜之ZnCo2-xNixO4的前驅液配製 30
3.2.2塗佈鍍膜 30
3.2.3氣氛爐退火 31
3.3檢測分析 33
3.3.1 高解析X光繞射分析儀 (High resolution X-ray diffractometer,HR-XRD) 33
3.3.2場發射掃描式電子顯微鏡(Field emission scanning electron microscope, FE-SEM) 34
3.3.3紫外光-可見光吸收光譜儀(Ultraviolet and visible spectroscopy,UV-vis) 36
3.3.4霍爾量測儀(Hall effect measurement system) 37
3.3.5 X光電子能譜儀(X-ray photoelectron spectrometer,XPS) 39
第4章 結果與討論 41
4.1 ZnCo2O4摻雜鎳之薄膜製備 41
4.2 X光繞射分析 41
4.3晶格常數分析 46
4.4電子顯微鏡分析 49
4.5光學特性分析 55
4.6電性分析 64
4.7 X光電子能譜儀分析 67
第5章 結論 84
參考文獻 86
著作 90
簡歷 91

[1] A. Kalendová, D. Veselý, M. Kohl, Synthesis of Me2TiO4 and MeFe2O4 spinels and their use in organic alkyd resin-based anticorrosion coatings, Corrosion Reviews 32 (1-2) (2014).
[2] Z. Ristanovic, A. Kalezic-Glisovic, N. Mitrovic, S. Djukic, D. Kosanović, A. Maricic, The Influence of Mechanochemical Activation and Thermal Treatment on Magnetic Properties of the BaTiO3-FexOy Powder Mixture, (2015).
[3] C. Wu, J. Cai, Q. Zhang, X. Zhou, Y. Zhu, L. Li, P. Shen, K. Zhang, Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors, Electrochimica Acta 169 (2015) 202-209.
[4] M.M. Thackeray, Spinel Electrodes from the Li-Mn-O System for Rechargeable Lithium Battery Applications, Journal of The Electrochemical Society 139 (2) (1992) 363.
[5] D.S. Mathew, R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chemical Engineering Journal 129 (1-3) (2007) 51-65.
[6] F.-L. Schein, M. Winter, T. Böntgen, H. von Wenckstern, M. Grundmann, Highly rectifying p-ZnCo2O4/n-ZnO heterojunction diodes, Applied Physics Letters 104 (2) (2014).
[7] B. Samuneva, V. Kozhukharov, C. Trapalis, R. Kranold, Sol-gel processing of titanium-containing thin coatings, Journal of Materials Science 28 (9) (1993) 2353-2360.
[8] H. Dislich, P. Hinz, History and principles of the sol-gel process, and some new multicomponent oxide coatings, Journal of Non-Crystalline Solids 48 (1) (1982) 11-16.
[9] H. Dislich, New Routes to Multicomponent Oxide Glasses, Angewandte Chemie International Edition in English 10 (6) (1971) 363-370.
[10] M. Guglielmi, G. Carturan, Precursors for sol-gel preparations, Journal of Non-Crystalline Solids 100 (1) (1988) 16-30.
[11] S. Bera, G. Udayabhanu, R. Narayan, T. Rout, Methodologies of Application of Sol-Gel Based Solution onto Substrate: A Review, (2016).
[12] M. Szindler, Sol gel TiO2 antireflection coatings for silicon solar cells, (2012).
[13] L. Sim, V. Tin Vui Richard, M. Jaafar, Properties of epoxy nanocomposite thin films prepared by spin coating technique, (2011).
[14] P. Kajal, K. Ghosh, S. Powar, Manufacturing Techniques of Perovskite Solar Cells, (2018) 341-364.
[15] M. Kemell, M. Ritala, M. Leskelä, Thin Film Deposition Methods for CulnSe2 Solar Cells, (2005).
[16] Y.Z. Shi, P.F. Ndione, L.Y. Lim, D. Sokaras, T.C. Weng, A.R. Nagaraja, A.G. Karydas, J.D. Perkins, T.O. Mason, D.S. Ginley, A. Zunger, M.F. Toney, Self-Doping and Electrical Conductivity in Spinel Oxides : Experimental Validation of Doping Rules, Chemistry of Materials 26 (5) (2014) 1867-1873.
[17] T.R. Paudel, A. Zakutayev, S. Lany, M. d'Avezac, A. Zunger, Doping Rules and Doping Prototypes in A2BO4 Spinel Oxides, Advanced Functional Materials 21(23) (2011) 4493-4501.
[18] S. Vijayanand, P.A. Joy, H.S. Potdar, D. Patil, P. Patil, Nanostructured spinel ZnCo2O4 for the detection of LPG, Sensors and Actuators B : Chemical 152 (1) (2011) 121-129.
[19] X. Niu, W. Du, W. Du, Preparation and gas sensing properties of ZnM2O4 (M = Fe, Co, Cr), Sensors and Actuators B : Chemical 99 (2-3) (2004) 405-409.
[20] J.A. Rajesh, B.K. Min, J.H. Kim, H. Kim, K.S. Ahn, Cubic Spinel AB2O4 Type Porous ZnCo2O4 Microspheres : Facile Hydrothermal Synthesis and Their Electrochemical Performances in Pseudocapacitor, Journal of the Electrochemical Society 163 (10) (2016) A2418-A2427.
[21] M.V. Reddy, K.Y.H. Kenrick, T.Y. Wei, G.Y. Chong, G.H. Leong, B.V.R. Chowdari, Nano-ZnCo2O4 Material Preparation by Molten Salt Method and Its Electrochemical Properties for Lithium Batteries, Journal of The Electrochemical Society 158 (12) (2011) A1423-A1430.
[22] T.W. Kim, M.A. Woo, M. Regis, K.S. Choi, Electrochemical Synthesis of Spinel Type ZnCo2O4 Electrodes for Use as Oxygen Evolution Reaction Catalysts, The Journal of Physical Chemical Letters 5 (13) (2014) 2370-2374.
[23] H. Heydari, M.B. Gholivand, Novel synthesis and characterization of ZnCo2O4 nanoflakes grown on nickel foam as efficient electrode materials for electrochemical supercapacitors, International Journal of Ionics The Science and Technology of Ionic Motion 23 (6) (2017) 1489-1498.
[24] X. Wei, D. Chen, W. Tang, Preparation and characterization of the spinel oxide ZnCo2O4 obtained by sol–gel method, Materials Chemistry and Physics 103 (1) (2007) 54-58.
[25] H. Behzad, F.E. Ghodsi, Effect of Zn content on the structural, optical, electrical and supercapacitive properties of sol–gel derived ZnCo2O4 nanostructured thin films, Journal of Materials Science: Materials in Electronics 27 (6) (2016) 6096-6107.
[26] S. Kim, J.A. Cianfrone, P. Sadik, K.W. Kim, M. Ivill, D.P. Norton, Room temperature deposited oxide p-n junction using p-type zinc-cobalt-oxide, Journal of Applied Physics 107 (10) (2010) 103538.
[27] X.L. Wen, Z. Chen, E.H. Liu, X. Lin, Structural and magnetic characterization of ZnCo2O4 thin film prepared by pulsed laser deposition, Applied Surface Science 357 (2015) 1212-1216.
[28] V. Zviagin, P. Richter, T. Böntgen, M. Lorenz, M. Ziese, D.R.T. Zahn, G. Salvan, M. Grundmann, R. Schmidt-Grund, Comparative study of optical and magneto-optical properties of normal, disordered, and inverse spinel-type oxides, physica status solidi B 253 (3) (2016) 429-436.
[29] H.J. Kim, I.C. Song, J.H. Sim, H. Kim, D. Kim, Y.E. Ihm, W.K. Choo, Electrical and magnetic properties of spinel-type magnetic semiconductor ZnCo2O4 grown by reactive magnetron sputtering, Journal of Applied Physics 95 (11) (2004) 7387-7389.
[30] Z. Chen, X.L. Wen, L.W. Niu, M. Duan, Y.J. Zhang, X.L. Dong, R.L. Zhang, C.L. Chen, Transport and magnetic properties of ZnCo2O4/Si heterostructures grown by radio frequency magnetron sputtering, Thin Solid Films 573 (2014) 90-94.
[31] J.D. Perkins, T.R. Paudel, A. Zakutayev, P.F. Ndione, P.A. Parilla, D.L. Young, S. Lany, D.S. Ginley, A. Zunger, N.H. Perry, Y. Tang, M. Grayson, T.O. Mason, J.S. Bettinger, Y. Shi, M.F. Toney, Inverse design approach to hole doping in ternary oxides : Enhancingp-type conductivity in cobalt oxide spinels, Physical Review B 84 (20) (2011) 205207.
[32] J. Kumar, C.R. Mariappan, V. Kumar, S. Murugavel, G.V. Prakash, Study of spinel-type ZnNixCo2-xO4 nano-particles, synthesised by thermal decomposition of ternary metal nitrate solutions, Materials Research Bulletin 83 (2016) 632-639.
[33] K. Liu, X. Li, L. Liang, J. Wu, X. Jiao, J. Xu, Y. Sun, Y. Xie, Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2, Nano Research 11 (6) (2018) 2897-2908.
[34] J. Rashid, M.A. Barakat, R.M. Mohamed, I.A. Ibrahim, Enhancement of photocatalytic activity of zinc/cobalt spinel oxides by doping with ZrO2 for visible light photocatalytic degradation of 2-chlorophenol in wastewater, Journal of Photochemistry and Photobiology A: Chemistry 284 (2014) 1-7.
[35] L.H. CUI Bai, ZHAO Xiao-Chong, LI Jian-Bao, LI Wen-Di, Visible Light Induced Photocatalytic Activity of ZnCo2O4 Nanoparticles, Acta Physico-Chimica Sinica 27 (10) (2011) 2411-2415.
[36] M. Dekkers, G. Rijnders, D.H.A. Blank, ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc-d6-transition metal oxide, Applied Physics Letters 90 (2) (2007) 021903.
[37] U.M. Patil, R.R. Salunkhe, K.V. Gurav, C.D. Lokhande, Chemically deposited nanocrystalline NiO thin films for supercapacitor application, Applied Surface Science 255 (5) (2008) 2603-2607.
[38] J. He, Y. Sun, M. Wang, Z. Geng, X. Wu, L. Wang, H. Chen, K. Huang, S. Feng, Direct growth of NiCo2O4 nanostructure on conductive substrate by electrospray technique for oxygen evolution reaction, Journal of Alloys and Compounds 752 (2018) 389-394.
[39] G.M. Tomboc, F.O. Agyemang, H. Kim, Improved electrocatalytic oxygen evolution reaction properties using PVP modified direct growth Co-based metal oxides electrocatalysts on nickel foam, Electrochimica Acta 263 (2018) 362-372.
[40] X. Wang, P. Zhang, T. Wang, O. Yamamoto, N. Imanishi, M. Wang, Facile synthesis of mesoporous NiCo2O4 nanoneedle arrays on three dimensional graphene thin film grown on Ni foam for a high-performance binder-free lithium-ion battery anode, Journal of Electroanalytical Chemistry 823 (2018) 545-552.
[41] W. Chang, W. Xue, E. Liu, J. Fan, B. Zhao, Highly efficient H2 production over NiCo2O4 decorated g-C3N4 by photocatalytic water reduction, Chemical Engineering Journal 362 (2019) 392-401.
[42] Y. Teng, Y.-q. Huo, S.-t. Li, X.-m. Niu, N. Fan, Z.-m. Su, A zipper-like NiCo2O4/Ni(OH)2 growing on multifunctional nickel foam with excellent capacitive performance, Journal of Alloys and Compounds 784 (2019) 712-719.
[43] W. Xu, J. Chen, Y. Qiu, W. Peng, N. Shi, J. Zhou, Highly efficient microwave catalytic oxidation degradation of 4-nitrophenol over magnetically separable NiCo2O4-Bi2O2CO3 composite without adding oxidant, Separation and Purification Technology 213 (2019) 426-436.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊