|
[1] A. Kalendová, D. Veselý, M. Kohl, Synthesis of Me2TiO4 and MeFe2O4 spinels and their use in organic alkyd resin-based anticorrosion coatings, Corrosion Reviews 32 (1-2) (2014). [2] Z. Ristanovic, A. Kalezic-Glisovic, N. Mitrovic, S. Djukic, D. Kosanović, A. Maricic, The Influence of Mechanochemical Activation and Thermal Treatment on Magnetic Properties of the BaTiO3-FexOy Powder Mixture, (2015). [3] C. Wu, J. Cai, Q. Zhang, X. Zhou, Y. Zhu, L. Li, P. Shen, K. Zhang, Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors, Electrochimica Acta 169 (2015) 202-209. [4] M.M. Thackeray, Spinel Electrodes from the Li-Mn-O System for Rechargeable Lithium Battery Applications, Journal of The Electrochemical Society 139 (2) (1992) 363. [5] D.S. Mathew, R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chemical Engineering Journal 129 (1-3) (2007) 51-65. [6] F.-L. Schein, M. Winter, T. Böntgen, H. von Wenckstern, M. Grundmann, Highly rectifying p-ZnCo2O4/n-ZnO heterojunction diodes, Applied Physics Letters 104 (2) (2014). [7] B. Samuneva, V. Kozhukharov, C. Trapalis, R. Kranold, Sol-gel processing of titanium-containing thin coatings, Journal of Materials Science 28 (9) (1993) 2353-2360. [8] H. Dislich, P. Hinz, History and principles of the sol-gel process, and some new multicomponent oxide coatings, Journal of Non-Crystalline Solids 48 (1) (1982) 11-16. [9] H. Dislich, New Routes to Multicomponent Oxide Glasses, Angewandte Chemie International Edition in English 10 (6) (1971) 363-370. [10] M. Guglielmi, G. Carturan, Precursors for sol-gel preparations, Journal of Non-Crystalline Solids 100 (1) (1988) 16-30. [11] S. Bera, G. Udayabhanu, R. Narayan, T. Rout, Methodologies of Application of Sol-Gel Based Solution onto Substrate: A Review, (2016). [12] M. Szindler, Sol gel TiO2 antireflection coatings for silicon solar cells, (2012). [13] L. Sim, V. Tin Vui Richard, M. Jaafar, Properties of epoxy nanocomposite thin films prepared by spin coating technique, (2011). [14] P. Kajal, K. Ghosh, S. Powar, Manufacturing Techniques of Perovskite Solar Cells, (2018) 341-364. [15] M. Kemell, M. Ritala, M. Leskelä, Thin Film Deposition Methods for CulnSe2 Solar Cells, (2005). [16] Y.Z. Shi, P.F. Ndione, L.Y. Lim, D. Sokaras, T.C. Weng, A.R. Nagaraja, A.G. Karydas, J.D. Perkins, T.O. Mason, D.S. Ginley, A. Zunger, M.F. Toney, Self-Doping and Electrical Conductivity in Spinel Oxides : Experimental Validation of Doping Rules, Chemistry of Materials 26 (5) (2014) 1867-1873. [17] T.R. Paudel, A. Zakutayev, S. Lany, M. d'Avezac, A. Zunger, Doping Rules and Doping Prototypes in A2BO4 Spinel Oxides, Advanced Functional Materials 21(23) (2011) 4493-4501. [18] S. Vijayanand, P.A. Joy, H.S. Potdar, D. Patil, P. Patil, Nanostructured spinel ZnCo2O4 for the detection of LPG, Sensors and Actuators B : Chemical 152 (1) (2011) 121-129. [19] X. Niu, W. Du, W. Du, Preparation and gas sensing properties of ZnM2O4 (M = Fe, Co, Cr), Sensors and Actuators B : Chemical 99 (2-3) (2004) 405-409. [20] J.A. Rajesh, B.K. Min, J.H. Kim, H. Kim, K.S. Ahn, Cubic Spinel AB2O4 Type Porous ZnCo2O4 Microspheres : Facile Hydrothermal Synthesis and Their Electrochemical Performances in Pseudocapacitor, Journal of the Electrochemical Society 163 (10) (2016) A2418-A2427. [21] M.V. Reddy, K.Y.H. Kenrick, T.Y. Wei, G.Y. Chong, G.H. Leong, B.V.R. Chowdari, Nano-ZnCo2O4 Material Preparation by Molten Salt Method and Its Electrochemical Properties for Lithium Batteries, Journal of The Electrochemical Society 158 (12) (2011) A1423-A1430. [22] T.W. Kim, M.A. Woo, M. Regis, K.S. Choi, Electrochemical Synthesis of Spinel Type ZnCo2O4 Electrodes for Use as Oxygen Evolution Reaction Catalysts, The Journal of Physical Chemical Letters 5 (13) (2014) 2370-2374. [23] H. Heydari, M.B. Gholivand, Novel synthesis and characterization of ZnCo2O4 nanoflakes grown on nickel foam as efficient electrode materials for electrochemical supercapacitors, International Journal of Ionics The Science and Technology of Ionic Motion 23 (6) (2017) 1489-1498. [24] X. Wei, D. Chen, W. Tang, Preparation and characterization of the spinel oxide ZnCo2O4 obtained by sol–gel method, Materials Chemistry and Physics 103 (1) (2007) 54-58. [25] H. Behzad, F.E. Ghodsi, Effect of Zn content on the structural, optical, electrical and supercapacitive properties of sol–gel derived ZnCo2O4 nanostructured thin films, Journal of Materials Science: Materials in Electronics 27 (6) (2016) 6096-6107. [26] S. Kim, J.A. Cianfrone, P. Sadik, K.W. Kim, M. Ivill, D.P. Norton, Room temperature deposited oxide p-n junction using p-type zinc-cobalt-oxide, Journal of Applied Physics 107 (10) (2010) 103538. [27] X.L. Wen, Z. Chen, E.H. Liu, X. Lin, Structural and magnetic characterization of ZnCo2O4 thin film prepared by pulsed laser deposition, Applied Surface Science 357 (2015) 1212-1216. [28] V. Zviagin, P. Richter, T. Böntgen, M. Lorenz, M. Ziese, D.R.T. Zahn, G. Salvan, M. Grundmann, R. Schmidt-Grund, Comparative study of optical and magneto-optical properties of normal, disordered, and inverse spinel-type oxides, physica status solidi B 253 (3) (2016) 429-436. [29] H.J. Kim, I.C. Song, J.H. Sim, H. Kim, D. Kim, Y.E. Ihm, W.K. Choo, Electrical and magnetic properties of spinel-type magnetic semiconductor ZnCo2O4 grown by reactive magnetron sputtering, Journal of Applied Physics 95 (11) (2004) 7387-7389. [30] Z. Chen, X.L. Wen, L.W. Niu, M. Duan, Y.J. Zhang, X.L. Dong, R.L. Zhang, C.L. Chen, Transport and magnetic properties of ZnCo2O4/Si heterostructures grown by radio frequency magnetron sputtering, Thin Solid Films 573 (2014) 90-94. [31] J.D. Perkins, T.R. Paudel, A. Zakutayev, P.F. Ndione, P.A. Parilla, D.L. Young, S. Lany, D.S. Ginley, A. Zunger, N.H. Perry, Y. Tang, M. Grayson, T.O. Mason, J.S. Bettinger, Y. Shi, M.F. Toney, Inverse design approach to hole doping in ternary oxides : Enhancingp-type conductivity in cobalt oxide spinels, Physical Review B 84 (20) (2011) 205207. [32] J. Kumar, C.R. Mariappan, V. Kumar, S. Murugavel, G.V. Prakash, Study of spinel-type ZnNixCo2-xO4 nano-particles, synthesised by thermal decomposition of ternary metal nitrate solutions, Materials Research Bulletin 83 (2016) 632-639. [33] K. Liu, X. Li, L. Liang, J. Wu, X. Jiao, J. Xu, Y. Sun, Y. Xie, Ni-doped ZnCo2O4 atomic layers to boost the selectivity in solar-driven reduction of CO2, Nano Research 11 (6) (2018) 2897-2908. [34] J. Rashid, M.A. Barakat, R.M. Mohamed, I.A. Ibrahim, Enhancement of photocatalytic activity of zinc/cobalt spinel oxides by doping with ZrO2 for visible light photocatalytic degradation of 2-chlorophenol in wastewater, Journal of Photochemistry and Photobiology A: Chemistry 284 (2014) 1-7. [35] L.H. CUI Bai, ZHAO Xiao-Chong, LI Jian-Bao, LI Wen-Di, Visible Light Induced Photocatalytic Activity of ZnCo2O4 Nanoparticles, Acta Physico-Chimica Sinica 27 (10) (2011) 2411-2415. [36] M. Dekkers, G. Rijnders, D.H.A. Blank, ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc-d6-transition metal oxide, Applied Physics Letters 90 (2) (2007) 021903. [37] U.M. Patil, R.R. Salunkhe, K.V. Gurav, C.D. Lokhande, Chemically deposited nanocrystalline NiO thin films for supercapacitor application, Applied Surface Science 255 (5) (2008) 2603-2607. [38] J. He, Y. Sun, M. Wang, Z. Geng, X. Wu, L. Wang, H. Chen, K. Huang, S. Feng, Direct growth of NiCo2O4 nanostructure on conductive substrate by electrospray technique for oxygen evolution reaction, Journal of Alloys and Compounds 752 (2018) 389-394. [39] G.M. Tomboc, F.O. Agyemang, H. Kim, Improved electrocatalytic oxygen evolution reaction properties using PVP modified direct growth Co-based metal oxides electrocatalysts on nickel foam, Electrochimica Acta 263 (2018) 362-372. [40] X. Wang, P. Zhang, T. Wang, O. Yamamoto, N. Imanishi, M. Wang, Facile synthesis of mesoporous NiCo2O4 nanoneedle arrays on three dimensional graphene thin film grown on Ni foam for a high-performance binder-free lithium-ion battery anode, Journal of Electroanalytical Chemistry 823 (2018) 545-552. [41] W. Chang, W. Xue, E. Liu, J. Fan, B. Zhao, Highly efficient H2 production over NiCo2O4 decorated g-C3N4 by photocatalytic water reduction, Chemical Engineering Journal 362 (2019) 392-401. [42] Y. Teng, Y.-q. Huo, S.-t. Li, X.-m. Niu, N. Fan, Z.-m. Su, A zipper-like NiCo2O4/Ni(OH)2 growing on multifunctional nickel foam with excellent capacitive performance, Journal of Alloys and Compounds 784 (2019) 712-719. [43] W. Xu, J. Chen, Y. Qiu, W. Peng, N. Shi, J. Zhou, Highly efficient microwave catalytic oxidation degradation of 4-nitrophenol over magnetically separable NiCo2O4-Bi2O2CO3 composite without adding oxidant, Separation and Purification Technology 213 (2019) 426-436.
|