|
[1] Alireza Shameli-Sendi, Rouzbeh Aghababaei-Barzegar, and Mohamed Cheriet. Taxonomy of information security risk assessment (isra). Computers & security, 57:14– 30, 2016. [2] 鄭皓陽祝亞琪, 魏銪志. 資訊安全風險評鑑方法比較. In: 電腦稽核,23,(2011), pp:26–43. [3] ISO Central Secretary. ISO/IEC 31000 Risk management. standard, International Organization for Standardization, 2018. [4] ISO Central Secretary. ISO/IEC 31010 Risk management —Risk assessment techniques. standard, International Organization for Standardization, 2009. [5] ISO Central Secretary. ISO/IEC 27005 Information technology - Security techniques - Information security risk management. standard, International Organization for Standardization, 2018. [6] Joint Task Force Transformation Initiative. Sp 800-30 Revision1 Guide for Conducting Risk Assessments. Technical report, 2012. [7] ISO Central Secretary. ISO/IEC 29134 Information technology —Security techniques —Guidelines for privacy impact assessment. standard, International Organization for Standardization, 2017. [8] Elaine Hulitt and Rayford B Vaughn. Information system security compliance to fisma standard: a quantitative measure. Telecommunication Systems, 45(2-3):139– 152, 2010. [9] Evan Wheeler. Building an information security risk management program from the ground up. Wheeler, Ed. Waltham, 2011. [10] Zeynep Filiz Eren-Dogu and Can Cengiz Celikoglu. Information security risk assessment: Bayesian prioritization for ahp group decision making. International Journal of Innovative Computing, Information and Control, 8(8001-8018):46, 2012. [11] Mete Eminagaoglu and Saban Eren. Implementation and comparison of machine learning classifiers for information security risk analysis of a human resources department. In 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM), pages 187–192. IEEE, 2010. [12] Dong-Mei Zhao, Jin-Xing Liu, and Ze-Hong Zhang. Method of risk evaluation of information security based on neural networks. In 2009 International Conference on Machine Learning and Cybernetics, volume 2, pages 1127–1132. IEEE, 2009. [13] Zhang Xinlan, Huang Zhifang, Wei Guangfu, and Zhang Xin. Information security risk assessment methodology research: Group decision making and analytic hierar44 chy process. In 2010 Second world congress on software engineering, volume 2, pages 157–160. IEEE, 2010. [14] Alfredo Altuzarra, José María Moreno-Jiménez, and Manuel Salvador. A bayesian priorization procedure for ahp-group decision making. European Journal of Operational Research, 182(1):367–382, 2007. [15] Mansour Alali, Ahmad Almogren, Mohammad Mehedi Hassan, Iehab AL Rassan, and Md Zakirul Alam Bhuiyan. Improving risk assessment model of cyber security using fuzzy logic inference system. Computers & Security, 74:323–339, 2018. [16] 陳志誠, 林淑瓊, 李興漢, and 許派立. 資訊資產分類與風險評鑑之研究-以銀行 業為例. 資訊管理學報, 16(3):55–84, 2009. [17] 邱垂彥. 文章內容與圖像的相似性分析. Thesis, 2016. [18] Gang Qian, Shamik Sural, Yuelong Gu, and Sakti Pramanik. Similarity between Euclidean and cosine angle distance for nearest neighbor queries. Proceedings of the 2004 ACM symposium on Applied computing. 2004. [19] Abhishek Jain, Aman Jain, Nihal Chauhan, Vikrant Singh, and Narina Thakur. Information retrieval using cosine and jaccard similarity measures in vector space model. Int. J. Comput. Appl, 164:28–30, 2017. [20] Jin Zhang and Robert R Korfhage. A distance and angle similarity measure method. Journal of the American Society for Information Science, 50:772–778, 1999. [21] Anirut Suebsing and Nualsawat Hiransakolwong. Feature selection using euclidean distance and cosine similarity for intrusion detection model. 2009 First Asian Conference on Intelligent Information and Database Systems. 2009. [22] Eric P Xing, Michael I Jordan, Stuart J Russell, and Andrew Y Ng. Distance metric learning with application to clustering with side-information. In Advances in neural information processing systems, pages 521–528, 2003. [23] R Short and Keinosuke Fukunaga. The optimal distance measure for nearest neighbor classification. IEEE transactions on Information Theory, 27(5):622–627, 1981. [24] Archana Singh, Avantika Yadav, and Ajay Rana. K-means with three different distance metrics. International Journal of Computer Applications, 67(10), 2013. [25] Sergio Jimenez, Fabio A Gonzalez, and Alexander Gelbukh. Mathematical properties of soft cardinality: Enhancing jaccard, dice and cosine similarity measures with element-wise distance. Information Sciences, 367:373–389, 2016. [26] Suphakit Niwattanakul, Jatsada Singthongchai, Ekkachai Naenudorn, and Supachanun Wanapu. Using of Jaccard coefficient for keywords similarity, volume 1 of Proceedings of the international multiconference of engineers and computer scientists. 2013. [27] Manoj Chahal. Information retrieval using jaccard similarity coefficient. Int. J. Comput. Trends Technol, 36:140–143, 2016. 45 [28] AM FAHIM, AM SALEM, FA TORKEY, and MA RAMADAN. An efficient enhanced k-means clustering algorithm. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 7(10):2. [29] David Pollard et al. Strong consistency of k-means clustering. The Annals of Statistics, 9(1):135–140, 1981. [30] Shehroz S Khan and Amir Ahmad. Cluster center initialization algorithm for kmeans clustering. Pattern recognition letters, 25(11):1293–1302, 2004. [31] Gerhard Münz, Sa Li, and Georg Carle. Traffic anomaly detection using k-means clustering. In Proceedings of Leistungs-, Zuverlässigkeits-und Verlässlichkeitsbewertung von Kommunikationsnetzen und Verteilten Systemen, 4. GI/ITG-Workshop MMBnet 2007, 2007. [32] Yasser Yasami and Saadat Pour Mozaffari. A novel unsupervised classification approach for network anomaly detection by k-means clustering and id3 decision tree learning methods. The Journal of Supercomputing, 53(1):231–245, 2010. [33] Roya Ensafi, Soheila Dehghanzadeh, R Mohammad, and T Akbarzadeh. Optimizing fuzzy k-means for network anomaly detection using pso. In 2008 IEEE/ACS International Conference on Computer Systems and Applications, pages 686–693. IEEE, 2008. [34] Moisés F Lima, Bruno B Zarpelao, Lucas DH Sampaio, Joel JPC Rodrigues, Taufik Abrao, and Mario Lemes Proença. Anomaly detection using baseline and k-means clustering. In SoftCOM 2010, 18th International Conference on Software, Telecommunications and Computer Networks, pages 305–309. IEEE, 2010. [35] Ravi Ranjan and G Sahoo. A new clustering approach for anomaly intrusion detection. arXiv preprint arXiv:1404.2772, 2014. [36] Paul Jaccard. Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines. Bull Soc Vaudoise Sci Nat, 37:241–272, 1901. [37] Wang Huiqin and Lin Weiguo. Analysis of the Art of War of Sun Tzu by Text Mining Technology. 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS). 2018. [38] 梁敬东,崔丙剑,姜海燕,沈毅,谢元澄. 基于 word2vec 和 lstm 的句子相 似度计算及其在水稻 faq 问答系统中的应用. ࠄ京䞏䛳大䗄䗄㟥, 41:946–953, 2018. [39] 鄭家恒,李文花. 基于構詞法的網絡新詞自動識別初探. JOURNAL OF SHANXI UNIVERSITY(NATURAL SCIENCE EDITION), pages 115–119, 2002. [40] James MacQueen et al. Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967. [41] Trupti M Kodinariya and Prashant R Makwana. Review on determining number of cluster in k-means clustering. International Journal, 1(6):90–95, 2013. 46 [42] 林良泰 and 陳乃萁. K-means 集群分析法應用於號誌定時時制時段劃分之研 究. 運輸學т, 22(3):347–368, 2010. [43] 法務部. 個人資料保護法之特定目的及個人資料之類別, 1996.
|