跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/12 01:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉庭豪
研究生(外文):LIU,TING-HAO
論文名稱:氮化銦摻雜氧之濕度感測研究
論文名稱(外文):Electrical Properties of Indium Nitrogen Compound Doped Oxygen in Relative Humidity
指導教授:楊誌欽楊誌欽引用關係
指導教授(外文):YANG,CHIH-CHIN
口試委員:張順雄楊證富楊誌欽
口試委員(外文):CHANG,SHUN-HSYUNGYANG,CHENG-FUYANG,CHIH-CHIN
口試日期:2019-06-28
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:微電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:112
中文關鍵詞:氮化銦相對濕度奈米感測元件
外文關鍵詞:indium nitriderelative humiditynanometersensing device
相關次數:
  • 被引用被引用:3
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用DC濺鍍系統(DC sputtering system)成長氮化銦(indium nitride, InN)摻雜氧之感測薄膜(sensing film),研究中使用矽基板(silicon substrate),探討氮化銦摻雜氧之感測薄膜的靈敏度(sensitivity)與響應度(responsivity)。首先,利用霍爾量測系統(Hall measurement system),檢測感測薄膜之載子型態(carrier type)、載子濃度(carrier concentration)與載子移動率(carrier mobility),利用霍爾量測系統量測結果,氮化銦摻雜氧感測薄膜電阻係數(resistivity)約為6.2×10-1 ohm-cm,載子型態為P型,載子濃度為1.1×1017cm3,載子移動率為9.1×100 cm2/Vs。另外,利用掃描式電子顯微鏡(scanning electron microscope, SEM)觀察感測薄膜平面(plane)及截面(cross section),了解感測薄膜的奈米顆粒(nanometer particle)型態與成長狀況,測量結果,氮化銦摻雜氧感測薄膜之成長速率約為11 nm/min。透過X光繞射儀(x-ray diffraction, XRD)量測,獲得最佳氮化銦摻雜氧之感測薄膜。最後,利用環境濕度量測儀獲得感測薄膜的回滯特性(hysteresis)與時飄特性(time response)。其中,感測回滯特性是測量感測元件(sensing device)受相對濕度(relative humidity)影響的電阻值(resistance)、電容值(capacitance)與電感值(inductance),並計算出感測元件的吸附靈敏度(adsorption sensitivity)為103 ohm/%RH;去吸附靈敏度(desorption sensitivity)為125 ohm/%RH。時飄特性是利用測量感測元件之電阻特性、電容特性、電感特性受時間變數影響,得到濕度感測元件響應度的吸附時間為113秒;去吸附時間為240秒。利用電流-電壓(current to voltage, I-V)分析儀器可以計算出具有矽緩衝層(silicon buffer layer)濕度感測元件的靈敏度為3.9 kohm/%RH;無矽緩衝層濕度感測元件的靈敏度為6.7×10-2 kohm/%RH。

關鍵詞: 氮化銦、相對濕度、奈米、感測元件

DC sputtering system was used to grow the indium nitride (InN) with the oxygen doping (InN:O) as a sensing film. In this study,silicon (Si) substrates was used to explore the sensitivity and responsivity of InN:O sensing film.First, by using Hall measurement system, the carrier type,bulk carrier concentration and carrier mobility of InN:O sensing film were obtained The carrier type, carrier concentration, carrier mobility, and resistivity of InN:O sensing film are respectively P type,1.1×1017cm-3,9.1×100 cm2/Vs, and 6.2×101 ohm-cm.In addition,the scanning electron microscope(SEM) instrument was also used to observe the plane and the cross section properties of InN:O sensing film.The nanoparticle morphology of InN:O sensing film on the film surface and the growth rate of InN:O sensing film,about 11nm/min were obtained.Through the X-ray diffractometer(XRD) examination,the well crystal structure of InN:O sensing film was presented.Finally, there lative humidity measuring instrument was used to detect the hysteresis effect, sensitivity and dynamic sensing response of InN:O sensing device.The hysteresis effect of InN:O sensing device was evaluated by measuring the resistance, capacitance and inductance of InN:O sensing device at different relative humidity.Eventually, the calculations of the adsorption sensitivity and desorption sensitivity of the InN:O sensing device were completed, reached as 103 ohm/% RH and 125 ohm/%RH respectively. Dynamic sensing responses of InN:O sensing device by the measurements of the resistance capacitance, and inductance characteristics using time variableas a independent variable, which revealed the responsivity of relative humidity sensor including the adsorption time and desorption time, reached as 113 sec and 240sec respectively. Current to voltage properties of InN:O sensing devices both with and without silicon buffer layer measured at different relative humidity respectively exhibited the relative humidity sensitivities of 3.9 kohm/%RH and 6.7×10-2 kohm/%RH.

keywords:indium nitride,relative humidity,nanometer,sensing device

第一章 緒論
第二章 文獻探討
第三章 實驗流程
第四章 實驗結果與討論
第五章 結論與未來展望
[1]陳維鈞(2017)。金屬有機分子束磊晶系統成長高銦含量氮化銦鋁薄膜於矽基板之特性研究。科儀新知。211。
(http://www.airitilibrary.com/Publication/alDetailedMesh?DocID=10195440-201706-201706300010-201706300010-49-59)
[2]陳維鈞、郭守義、賴芳儀、蕭健男(2010)。以超高真空化學束磊晶系統成長氮化銦薄膜對結構特性之研究。科學與工程技術期刊。6 (1)。9-13。
(doi:10.7117/JSET.201003.0009)
[3]Saroni, A., Abdul Rahman, S. and Tong Goh, B. (2018). Effect of substrate temperature on the structural and optical properties of In2O3/InN nanostructure composite for photoelectrochemical performance. Materials Today: Proceedings, 5, pp.S186-S190.
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
[4] Kučera, M., Adikimenakis, A., Dobročka, E., Kúdela, R., Ťapajna, M., Laurenčíková, A., Georgakilas, A. and Kuzmík, J. (2019). Structural, electrical, and optical properties of annealed InN films grown on sapphire and silicon substrates. Thin Solid Films, 672, pp.114-119.
(https://doi.org/10.1016/j.tsf.2019.01.006)
[5] Feng, C., Liu, X., Wen, S. and An, Y. (2019). Controlled growth and characterization of In2O3 nanowires by chemical vapor deposition. Vacuum,161,pp.328-332.
(https://doi.org/10.1016/j.vacuum.2018.12.055)
[6] Chen, W., Kuo, S., Lai, F., Lin, W. and Hsiao, C. (2013). Effect of substrate temperature on structural and optical properties of InN epilayer grown on GaN template. Thin Solid Films, 529, pp.169-172.
(doi:10.1016/j.tsf.2012.06.031)
[7] 林旺德、高誠澤、張讚昌、黃國文、吳仁彰(2016)。摻雜KCl 於TiO2-WO3 複合材料在濕度感測器上之促進效果。臺灣鑛業。68(2)。51-57。
(http://www.airitilibrary.com.autorpa.lib.nkmu.edu.tw/Publication/alDetailedMesh?DocID=10219927-201606-201606230022-201606230022-51-57)
[8]劉佳融(2012)。銦鎵氧化鋅薄膜電晶體濕度感測元件之研究。國立高雄海洋科技大學微電子工程研究所碩士論文。
[9]吳仁彰、林旺德、賴德勝、張秀美、陳閔鴻、賴曉芳 (2013)。新穎性TiO2-WO3 複合材料在濕度感測上的應用。臺灣鑛業。65(2)。44-50。
(http://www.airitilibrary.com.autorpa.lib.nkmu.edu.tw/Publication/alDetailedMesh?DocID=10219927-201306-201307090013-201307090013-44-50)
[10] Qiang, T., Wang, C., Liu, M., Adhikari, K., Liang, J., Wang, L., Li, Y., Wu, Y., Yang, G., Meng, F., Fu, J., Wu, Q., Kim, N. and Yao, Z. (2018). High-Performance porous MIM-type capacitive humidity sensor realized via inductive coupled plasma and reactive-Ion etching. Sensors and Actuators B: Chemical, 258, pp.704-714.
(https://doi.org/10.1016/j.snb.2017.11.060)
[11] Duraia, E., Das, S. and Beall, G. (2019). Humic acid nanosheets decorated by tin oxide nanoparticles and there humidity sensing behavior. Sensors and Actuators B: Chemical, 280, pp.210-218.
(https://doi.org/10.1016/j.snb.2018.10.054)
[12] Kuznetsova, I., Anisimkin, V., Kolesov, V., Kashin, V., Osipenko, V., Gubin, S., Tkachev, S., Verona, E., Sun, S. and Kuznetsova, A. (2018). Sezawa wave acoustic humidity sensor based on graphene oxide sensitive film with enhanced sensitivity. Sensors and Actuators B: Chemical, 272, pp.236-242.
(doi.org/10.1016/j.snb.2018.05.158)
[13] Yu, S., Zhang, H., Chen, C. and Lin, C. (2019). Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle. Sensors and Actuators B: Chemical, 287, pp.526-534.
(https://doi.org/10.1016/j.snb.2019.02.089)
[14] Hsueh, H., Hsueh, T., Chang, S., Hung, F., Tsai, T., Weng, W., Hsu, C.and Dai, B. (2011). CuO nanowire-based humidity sensors prepared on glass substrate. Sensors and Actuators B: Chemical, 156(2), pp.906-911.
(doi:10.1016/j.snb.2011.03.004)
[15] Farzaneh, A., Mohammadzadeh, A., Esrafili, M. and Mermer, O. (2019). Experimental and theoretical study of TiO2 based nanostructured semiconducting humidity sensor. Ceramics International, 45(7), pp.8362-8369.
(https://doi.org/10.1016/j.ceramint.2019.01.144)
[16] Chen, M., Xue, S., Liu, L., Li, Z., Wang, H., Tan, C., Yang, J., Hu, X., Jiang, X., Cheng, Y., Wang, H., Xing, X. and He, S. (2019). A highly stable optical humidity sensor. Sensors and Actuators B: Chemical, 287, pp.329-337.
(https://doi.org/10.1016/j.snb.2019.02.051)
[17] Mohanty, G. and Sahoo, B. (2016). III-V nitrides and performance of graphene on copper plasmonic biosensor. Superlattices and Microstructures, 93, pp.226-233.
(http://dx.doi.org/10.1016/j.spmi.2016.03.040)
[18] Chen, P., Downes, J., Fernandes, A., Butcher, K., Wintrebert-Fouquet, M., Wuhrer, R. and Phillips, M. (2011). Effects of crystallinity and chemical variation on apparent band-gap shift in polycrystalline indium nitride. Thin Solid Films, 519(6), pp.1831-1836.
(doi:10.1016/j.tsf.2010.10.013)
[19] 陳維鈞、郭守義、賴芳儀、蕭健男(2016)。半極性氮化銦材料成長與分析。科儀新知,208,85-102。
(http://www.airitilibrary.com.autorpa.lib.nkmu.edu.tw/Publication/alDetailedMesh?DocID=10195440-201609-201610050019-201610050019-85-102)
[20]陳維鈞、郭守義、賴芳儀、林瑋婷、蕭健男(2012)。製備氮化銦奈米結構材料於GaN/Al2O3基板之研究。真空科技,25(3),9-14。
(doi:10.29808/JVSROC.201209.0003)
[21] Yang, C. C. (2017). Humidity sensing and resonant tunneling properties of indium nitride p-n device. Microelectronic Engineering, 171, pp.1-5.
(http://dx.doi.org/10.1016/j.mee.2016.12.025)
[22] Zheng, X., Fan, R., Li, C., Yang, X., Li, H., Lin, J., Zhou, X. and Lv, R. (2019). A fast-response and highly linear humidity sensor based on quartz crystal microbalance. Sensors and Actuators B: Chemical, 283, pp.659-665.
(https://doi.org/10.1016/j.snb.2018.12.081)
[23]Limodehi, H., Mozafari, M., Amiri, H. and Légaré, F. (2018). Multi-channel fiber optic dew and humidity sensor. Optical Fiber Technology, 41, pp.89-94.
(https://doi.org/10.1016/j.yofte.2018.01.006)
[24] Rimeika, R., Čiplys, D., Poderys, V., Rotomskis, R. and Shur, M. (2017). Fast-response and low-loss surface acoustic wave humidity sensor based on bovine serum albumin-gold nanoclusters film. Sensors and Actuators B: Chemical, 239, pp.352-357.
(http://dx.doi.org/10.1016/j.snb.2016.07.161)
[25] Le, X., Wang, X., Pang, J., Liu, Y., Fang, B., Xu, Z., Gao, C., Xu, Y. and Xie, J. (2018). A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure. Sensors and Actuators B: Chemical, 255, pp.2454-2461.
(http://dx.doi.org/10.1016/j.snb.2017.09.038)
[26] Kang, T., Park, J., Yun, G., Choi, H., Lee, H. and Yook, J. (2019). A real-time humidity sensor based on a microwave oscillator with conducting polymer PEDOT:PSS film. Sensors and Actuators B: Chemical, 282, pp.145-151.
(https://doi.org/10.1016/j.snb.2018.09.080)
[27] Ismail, A., Mamat, M., Md. Sin, N., Malek, M., Zoolfakar, A., Suriani, A., Mohamed, A., Ahmad, M. and Rusop, M. (2016). Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol−gel immersion for room temperature, resistive-type humidity sensor applications. Ceramics International, 42(8), pp.9785-9795.
(http://dx.doi.org/10.1016/j.ceramint.2016.03.071 )
[28] Gu, L., Huang, Q. and Qin, M. (2004). A novel capacitive-type humidity sensor using CMOS fabrication technology. Sensors and Actuators B: Chemical, 99(2-3), pp.491-498.
(doi:10.1016/j.snb.2003.12.060)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top