[1]陳維鈞(2017)。金屬有機分子束磊晶系統成長高銦含量氮化銦鋁薄膜於矽基板之特性研究。科儀新知。211。
(http://www.airitilibrary.com/Publication/alDetailedMesh?DocID=10195440-201706-201706300010-201706300010-49-59)
[2]陳維鈞、郭守義、賴芳儀、蕭健男(2010)。以超高真空化學束磊晶系統成長氮化銦薄膜對結構特性之研究。科學與工程技術期刊。6 (1)。9-13。
(doi:10.7117/JSET.201003.0009)
[3]Saroni, A., Abdul Rahman, S. and Tong Goh, B. (2018). Effect of substrate temperature on the structural and optical properties of In2O3/InN nanostructure composite for photoelectrochemical performance. Materials Today: Proceedings, 5, pp.S186-S190.
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
[4] Kučera, M., Adikimenakis, A., Dobročka, E., Kúdela, R., Ťapajna, M., Laurenčíková, A., Georgakilas, A. and Kuzmík, J. (2019). Structural, electrical, and optical properties of annealed InN films grown on sapphire and silicon substrates. Thin Solid Films, 672, pp.114-119.
(https://doi.org/10.1016/j.tsf.2019.01.006)
[5] Feng, C., Liu, X., Wen, S. and An, Y. (2019). Controlled growth and characterization of In2O3 nanowires by chemical vapor deposition. Vacuum,161,pp.328-332.
(https://doi.org/10.1016/j.vacuum.2018.12.055)
[6] Chen, W., Kuo, S., Lai, F., Lin, W. and Hsiao, C. (2013). Effect of substrate temperature on structural and optical properties of InN epilayer grown on GaN template. Thin Solid Films, 529, pp.169-172.
(doi:10.1016/j.tsf.2012.06.031)
[7] 林旺德、高誠澤、張讚昌、黃國文、吳仁彰(2016)。摻雜KCl 於TiO2-WO3 複合材料在濕度感測器上之促進效果。臺灣鑛業。68(2)。51-57。
(http://www.airitilibrary.com.autorpa.lib.nkmu.edu.tw/Publication/alDetailedMesh?DocID=10219927-201606-201606230022-201606230022-51-57)
[8]劉佳融(2012)。銦鎵氧化鋅薄膜電晶體濕度感測元件之研究。國立高雄海洋科技大學微電子工程研究所碩士論文。[9]吳仁彰、林旺德、賴德勝、張秀美、陳閔鴻、賴曉芳 (2013)。新穎性TiO2-WO3 複合材料在濕度感測上的應用。臺灣鑛業。65(2)。44-50。
(http://www.airitilibrary.com.autorpa.lib.nkmu.edu.tw/Publication/alDetailedMesh?DocID=10219927-201306-201307090013-201307090013-44-50)
[10] Qiang, T., Wang, C., Liu, M., Adhikari, K., Liang, J., Wang, L., Li, Y., Wu, Y., Yang, G., Meng, F., Fu, J., Wu, Q., Kim, N. and Yao, Z. (2018). High-Performance porous MIM-type capacitive humidity sensor realized via inductive coupled plasma and reactive-Ion etching. Sensors and Actuators B: Chemical, 258, pp.704-714.
(https://doi.org/10.1016/j.snb.2017.11.060)
[11] Duraia, E., Das, S. and Beall, G. (2019). Humic acid nanosheets decorated by tin oxide nanoparticles and there humidity sensing behavior. Sensors and Actuators B: Chemical, 280, pp.210-218.
(https://doi.org/10.1016/j.snb.2018.10.054)
[12] Kuznetsova, I., Anisimkin, V., Kolesov, V., Kashin, V., Osipenko, V., Gubin, S., Tkachev, S., Verona, E., Sun, S. and Kuznetsova, A. (2018). Sezawa wave acoustic humidity sensor based on graphene oxide sensitive film with enhanced sensitivity. Sensors and Actuators B: Chemical, 272, pp.236-242.
(doi.org/10.1016/j.snb.2018.05.158)
[13] Yu, S., Zhang, H., Chen, C. and Lin, C. (2019). Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle. Sensors and Actuators B: Chemical, 287, pp.526-534.
(https://doi.org/10.1016/j.snb.2019.02.089)
[14] Hsueh, H., Hsueh, T., Chang, S., Hung, F., Tsai, T., Weng, W., Hsu, C.and Dai, B. (2011). CuO nanowire-based humidity sensors prepared on glass substrate. Sensors and Actuators B: Chemical, 156(2), pp.906-911.
(doi:10.1016/j.snb.2011.03.004)
[15] Farzaneh, A., Mohammadzadeh, A., Esrafili, M. and Mermer, O. (2019). Experimental and theoretical study of TiO2 based nanostructured semiconducting humidity sensor. Ceramics International, 45(7), pp.8362-8369.
(https://doi.org/10.1016/j.ceramint.2019.01.144)
[16] Chen, M., Xue, S., Liu, L., Li, Z., Wang, H., Tan, C., Yang, J., Hu, X., Jiang, X., Cheng, Y., Wang, H., Xing, X. and He, S. (2019). A highly stable optical humidity sensor. Sensors and Actuators B: Chemical, 287, pp.329-337.
(https://doi.org/10.1016/j.snb.2019.02.051)
[17] Mohanty, G. and Sahoo, B. (2016). III-V nitrides and performance of graphene on copper plasmonic biosensor. Superlattices and Microstructures, 93, pp.226-233.
(http://dx.doi.org/10.1016/j.spmi.2016.03.040)
[18] Chen, P., Downes, J., Fernandes, A., Butcher, K., Wintrebert-Fouquet, M., Wuhrer, R. and Phillips, M. (2011). Effects of crystallinity and chemical variation on apparent band-gap shift in polycrystalline indium nitride. Thin Solid Films, 519(6), pp.1831-1836.
(doi:10.1016/j.tsf.2010.10.013)
[19] 陳維鈞、郭守義、賴芳儀、蕭健男(2016)。半極性氮化銦材料成長與分析。科儀新知,208,85-102。
(http://www.airitilibrary.com.autorpa.lib.nkmu.edu.tw/Publication/alDetailedMesh?DocID=10195440-201609-201610050019-201610050019-85-102)
[20]陳維鈞、郭守義、賴芳儀、林瑋婷、蕭健男(2012)。製備氮化銦奈米結構材料於GaN/Al2O3基板之研究。真空科技,25(3),9-14。
(doi:10.29808/JVSROC.201209.0003)
[21] Yang, C. C. (2017). Humidity sensing and resonant tunneling properties of indium nitride p-n device. Microelectronic Engineering, 171, pp.1-5.
(http://dx.doi.org/10.1016/j.mee.2016.12.025)
[22] Zheng, X., Fan, R., Li, C., Yang, X., Li, H., Lin, J., Zhou, X. and Lv, R. (2019). A fast-response and highly linear humidity sensor based on quartz crystal microbalance. Sensors and Actuators B: Chemical, 283, pp.659-665.
(https://doi.org/10.1016/j.snb.2018.12.081)
[23]Limodehi, H., Mozafari, M., Amiri, H. and Légaré, F. (2018). Multi-channel fiber optic dew and humidity sensor. Optical Fiber Technology, 41, pp.89-94.
(https://doi.org/10.1016/j.yofte.2018.01.006)
[24] Rimeika, R., Čiplys, D., Poderys, V., Rotomskis, R. and Shur, M. (2017). Fast-response and low-loss surface acoustic wave humidity sensor based on bovine serum albumin-gold nanoclusters film. Sensors and Actuators B: Chemical, 239, pp.352-357.
(http://dx.doi.org/10.1016/j.snb.2016.07.161)
[25] Le, X., Wang, X., Pang, J., Liu, Y., Fang, B., Xu, Z., Gao, C., Xu, Y. and Xie, J. (2018). A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure. Sensors and Actuators B: Chemical, 255, pp.2454-2461.
(http://dx.doi.org/10.1016/j.snb.2017.09.038)
[26] Kang, T., Park, J., Yun, G., Choi, H., Lee, H. and Yook, J. (2019). A real-time humidity sensor based on a microwave oscillator with conducting polymer PEDOT:PSS film. Sensors and Actuators B: Chemical, 282, pp.145-151.
(https://doi.org/10.1016/j.snb.2018.09.080)
[27] Ismail, A., Mamat, M., Md. Sin, N., Malek, M., Zoolfakar, A., Suriani, A., Mohamed, A., Ahmad, M. and Rusop, M. (2016). Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol−gel immersion for room temperature, resistive-type humidity sensor applications. Ceramics International, 42(8), pp.9785-9795.
(http://dx.doi.org/10.1016/j.ceramint.2016.03.071 )
[28] Gu, L., Huang, Q. and Qin, M. (2004). A novel capacitive-type humidity sensor using CMOS fabrication technology. Sensors and Actuators B: Chemical, 99(2-3), pp.491-498.
(doi:10.1016/j.snb.2003.12.060)