跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/14 08:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪偉程
研究生(外文):HONG,WEI-CHENG
論文名稱:以溶膠凝膠法製備銅鋅錫硫粉末並探討其光學特性及應用
論文名稱(外文):Optical Properties and Application of Cu2ZnSnS4 Prepared by Sol-Gel Method
指導教授:葉旻彥葉旻彥引用關係
指導教授(外文):YEH,MIN-YEN
口試委員:葉旻彥楊奇達武東星雷伯薰
口試委員(外文):YEH,MIN-YENYANG,CHYI-DAWUU,DONG-SINGLEI,PO-HSUN
口試日期:2019-07-19
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:微電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:39
中文關鍵詞:銅鋅錫硫溶膠凝膠法光學特性硫化
外文關鍵詞:CZTSsol-geloprical propertiessulfurization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以溶膠凝膠法製備銅鋅錫硫(Cu2ZnSnS4)粉末,以氯化銅、氯化鋅、氯化錫及硫脲作為反應物加入水與酒精 100cc(比例 7:3)的溶液中以磁石攪拌隔水加熱(40℃)進行溶膠凝膠合成20分鐘 反應合成後的樣品以150℃進行烘乾5小時烘乾的樣品以研磨缽加以研磨再分別以200、300、400及500℃進行燒結然後再進行硫化處理(500℃) 所得之樣品分別標記為200T、300T、400T及500T使用XRD及SEM儀器分析材料之結構及表面特性,並使用紫外光/可見光光譜儀和LCR探討硫化處理前後之光學特性。

未經硫化處理的樣品經由XRD結構分析,200℃燒結的樣品沒有明顯的繞射結構 研判應為非晶結構, 300℃燒結的樣品有CuS、Cu9S8等結構的繞射峰而400℃及500℃燒結的樣品則只有較明顯的CuO結構,經硫化處理後的樣品則為CZTS的結構,光學特性主要探討樣品對光源的阻值變化,以UV及白光LED做為測試之光源,並比較硫化處理前後的樣品對於不同光源照射下的光敏反應。
In this study, copper zinc tin Sulphur (Cu2ZnSnS4) powder was prepared by sol-gel method. Copper chloride, zinc chloride, tin chloride and thiourea were used as raw materials, and were added to a solution (100cc) of water and alcohol in a ratio of 7:3. The suspension was magnetically stirred and placed on a hot plate for water insulation heating at 40℃ for 20min. The synthesized samples were put in an oven for drying at 150 °C for 5 hours. The dried samples were taken into a bowl for grinding into powder. The powders were then backed at 200, 300, 400 and 500 °C, respectively, and labeled as 200T, 300T, 400T, 500T. Structure properties and morphology of the samples were characterized by XRD and SEM. Optical and sensing properties were analysis by using UV-visible spectrometer and LCR.

The samples (backed at 200 °C without sulfurization) reveal amorphous structure as checked by XRD, and the samples (backed at 300 °C) show CuS and Cu9S8 inside. With increasing the backing temperature to 400℃or 500°C, only obvious CuO was found in the samples. After sulfurization, all of the samples reveal CZTS structures. The optical properties were characterized by the correspondence impedance to the irradiating light sources. UV and white LED are used as the light sources. The optical sensing includes the samples with or without sulfurization treatment.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章緒論 1
1-1前言 1
1-2論文架構 2
第二章文獻回顧與研究動機 3
2-1研究動機 3
2-2光電材料 4
2-3光感測器 5
2-4 CZTS材料介紹 6
2-5 合成方法 7
2-5-1溶膠凝膠法 7
2-5-2溶膠凝膠法之優點 8
2-5-3硫化處理 8
第三章實驗方法與步驟 9
3-1.實驗材料 9
3-2.量測儀器 9
3-3實驗儀器 10
3-4.實驗方法與流程 10
3-4-1. 以溶膠凝膠法製備CZTS粉末 10
3-4-2. 硫化處理CZTS粉末 12
3-4-3.製備濕度感測器 13
3-4-4.濕度感測 13
3-4-5光催化實驗 14
3-5.材料特性量測與分析 15
3-5-1.X-ray繞射儀(X-ray diffractometer , XRD) 15
3-5-2紫外光/可見光光譜儀 (UV-Visible Spectroscopy) 15
3-5-3 光催化降解 16
第四章 結果與討論 17
4-1.材料特性與分析 17
4-1-1.XRD 17
4-1-2. 未硫化各燒結溫度之紫外光/可見光光譜儀分析 19
4-2.感測器結果與探討 20
4-2-1.濕度感測實驗 20
4-3.光催化降解 23
第五章 結論 26
參考文獻 27
[1] Ito, K, Nakazawa, T. “Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films”, In: Japanese Journal of Applied Physics. 27 (1988), S.2094–2097.

[2] A. Y. Tang, J. J. Liu, J. Ji, M. L. Dou, Z. L. Li, and F. Wang, “One-step electrodeposition for targeted off-stoichiometry Cu2ZnSnS4 thin films”, Applied Surface Science, vol. 383, pp. 253-260, Oct 2016.

[3] M. I. Khalil, O. Atici, A. Lucotti, S. Binetti, A. Le Donne, and L. Magagnin, “CZTS absorber layer for thin film solar cells from electrodeposited metallic stacked precursors (Zn/Cu-Sn)”, Applied Surface Science, vol. 379, pp. 91-97, Aug 2016.

[4] Y. P. Lin, Y. F. Chi, T. E. Hsieh, Y. C. Chen, and K. P. Huang, “Preparation of Cu2ZnSnS4 (CZTS) sputtering target and its application to the fabrication of CZTS thin-film solar cells”, Journal of Alloys and Compounds, vol. 654, pp. 498-508, Jan 2016.

[5] Chinnaiyah Sripan, R.Ganesan, E.M. Viond, Annamraju Kasi Viswanth, “The effect of sulfur on the phase formation of Cu2ZnSnS4 solar cell material”, Materials Letters, Volume. 180, Pages. 295-297, 1 October 2016.

[6] Amin Emrani, Parag Vasekar, Charles R. Westgate, “Effects of sulfurization temperature on CZTS thin film solar cell performances”, Solar Energy, Volume. 98, Part C, Pages. 335-340, December 2013.

[7] Zhishan Li, Shurong Wang, Xun Ma, Min Yang, Zhi Jiang, Tao Liu, Yilei Lu, Sijia Liu, “A simple structure of Cu2ZnSnS4/Cds solar cells prepared by sputtering”, Physica B: Condensed Matter, Volume. 526, Pages.80-83, 1 December 2017.

[8] P. Prabeesh, I. Packia Selvam, S.N. Potty, “Effect of annealing temperature on a single step processed Cu2ZnSnS4 thin film via solution method”, Thin Solid Films, Volume. 606, Pages. 94-98, 1 May 2016.

[9] Sandip Mahajan, Elias Stathaots, Nanasaheb Huse, Ravikiran Birajdar, Alexandros Kalarakis, Ramphal Sharma, “Low cost nanostructure kesterite CZTS thin films for solar cells application”, Materials Letters, Volume. 210, Pages. 92-96,1 January 2018.

[10] Xinhua Guo, Jiecai Han, Huayu Zhang, Xinguanag Lv, Jianwei Yan, Rui Sun, “Sol-gel synthesis of Cu2ZnSnS4 thin films under mild conditions”, Journal of Alloy and Compounds, Volume. 697, Pages. 361-366, 15 March 2017.

[11] Z. Laghfour, S. Aazou, M. Taibi, G. Schmerber, A. Ulyashin, A. Dinia, A. Slaoui, M. Abd-Lefdil, Z. Sekkat, “Sodium doping mechanism on sol-gel processed
kesterite Cu2ZnSnS4 thin films”, Superlattices and Microstructures, Volume. 120, Pages. 747-752, August 2018.

[12] G. Rajesh, N. Muthukumarasamy, S. Agilan, Dhayalan Velauthapillai, Kallol Mohanta, Sudip K. Batabyal, “Electrical bistability of sol-gel derived Cu2ZnSnS4 thin films”, Materials Letters, Volume. 220, Pages.285-288, 1 June 2018.

[13] Birendra Kumar Rajwar, Shailendra Kumar Sharma, “Structural and optical properties of Cu2ZnSnS4 synthesized by ultrasonic assisted sol-gel method”, Physica B: Condensed Matter, Volume. 537, Pages. 111-115, 15 May 2018.

[14] M. A. Olgar, J. Klaer, R. Mainz, S. Levcenco, J. Just, E. Bacaksiz, et al., “Effect of precursor stacking order and sulfurization temperature on compositional homogeneity of CZTS thin films”, Thin Solid Films, vol. 615, pp. 402-408, Sep 2016.

[15] M. Yang, Z. Jiang, Z. S. Li, S. J. Liu, Y. L. Lu, and S. R. Wang, “Effects of different precursors on Cu2ZnSnS4 thin film solar cells prepared by sputtering method”, Materials Science in Semiconductor Processing, vol. 56, pp. 238-242, Dec 2016.

[16] P. A. Cormier and R. Snyders, “Phase transformation during Cu2ZnSnS4 synthesis by reactive magnetron co-sputtering”, Acta Materialia, vol. 110, pp. 53-60, May 2016.

[17] O. P. Singh, R. Parmar, K. S. Gour, M. K. Dalai, J. Tawale, S. P. Singh, et al., “Synthesis and characterization of petal type CZTS by stacked layer reactive sputtering”, Superlattices and Microstructures, vol. 88, pp. 281-286, Dec 2015.

[18] 葉旻彥、武東星, 銅鋅錫硫(CZTS)太陽電池的發展簡介 vol. 295: 工業材料雜誌, 2011.

[19] 馬振基, 奈米材料科技原理與應用: 全華圖書股份有限公司, 2015.

[20] Kuyyadi P. Biju, Mahaveer K. Jain, 2008,” Effect of crystallization on humidity sensing properties of sol–gel derived nanocrystalline TiO2 thin films”, Thin Solid Films Volume 516, Issue 8, Pages 2175-2180, 29 February.

[21] Ting Xie, Asha Rani, Baomei Wen, Audie Castillo, Brian Thomson,Ratan Debnath, Thomas E. Murphy, R.D. Gomez, Abhishek Motayed, 2016”, The effects of surface conditions of TiO2 thin film on the UV assisted sensing response at room temperature”, Thin Solid Films Volume 620, Pages 76-81, 1 December.

[22] A. L. Patterson, 1939, “The Scherrer Formula for X-Ray Particle Size Determination”, Phys. Rev., vol. 56, pp. 978-982, November.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top