跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 11:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡承暘
研究生(外文):HU CHENG-YANG
論文名稱:以磁控濺鍍法於銅箔上成長少層石墨烯
論文名稱(外文):Growth of Few-layer Graphene Film On Copper Foils by Magnetron Sputtering
指導教授:賴富德
指導教授(外文):LAI FU-DER
口試委員:黃繼遠梁財春賴富德花瑞銘
口試日期:2019-06-18
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:78
中文關鍵詞:鋰離子電池石墨烯濺鍍銅箔
外文關鍵詞:Lithium ion batteryGrapheneSputteringCopper foils
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
自2004年石墨烯被發現至今,已有許多科學家不斷研究並嘗試應用於各種領域。但在石墨烯製備技術上仍有許多困難,使石墨烯至今仍無法普遍的運用於各領域。製備石墨烯常遭遇的困難如:製程需於超高溫環境,迫使成本提高、石墨烯生產尺寸面積及膜層數量難以控制、因產量低而不便於大規模生產以及製備後需轉移等問題
。而目前在製程上最為常見的製備方法為化學氣相沉積法(Chemical Vepor Deposition, CVD),雖然此方法可製備出高品質且大面積之石墨烯薄膜,但缺點就是需要於高溫環境,導致高成本及長時間的製備。因此,擁有低成本、製程速度快、免轉移等優點的製備方法是備受期待的。
可充電鋰離子電池作為主要的動力源,便攜式電子設備,不管是在科學或是工業領域皆備受關注。為了使鋰離子電池具有大容量、高壽命、低成本之優勢,我們使用反應式磁控濺鍍系統製備出優異的固態鋰離子電池之負極材料,朝向能商業化的研究方向前進。
本研究在低溫下製備出少層石墨烯(十層以下),我們發現若以矽作為催化材料於下層生長3分鐘、甲烷流量3sccm、銅碳生長時間120秒、退火溫度900℃及退火持溫60分鐘能有效製備出十層以下的少層石墨烯,直接生長於銅箔上可以當作鋰電池之負極材料。

Graphene has been discovered since 2004. Numerous scientists are continuing doing research and trying to apply it in different fields because many of its features are better than those materials that have been found so far. However, there are a lot of difficulties on graphene preparation. That is why graphene still cannot be widely used in different fields today. It is quite difficult to produce graphene. For example, the process requires an ultra-high temperature environment which forced higher cost. Moreover, it is hard to control the area of graphene and numbers of film layers when it produces. Besides, due to low capacity d that, graphene can’t be mass-produced and transference still cause some problems to solve. Today, the common preparation method for graphene is Chemical Vapor Deposition(CVD). This method is able to produce high quality and large size of graphene, but the problems are related to an ultra-high temperature environment which causes higher cost and needs more process time. Therefore, we are looking forward to having the preparation method with low cost, efficient process and non-transfer.
Rechargeable lithium-ion batteries as the main power source, the portable electronic device, either or both of concern in the scientific industry. In order to make the lithium ion battery having the advantages of high capacity, high life and low cost, we use the reactive magnetron sputtering system to prepare the anode material of the excellent solid lithium-ion battery, and proceed to the commercial research direction.
In this study, few–layer graphene (below ten layers) were prepared at low temperature, we could efficiently fabricate the graphene lower then ten layers under the following conditions: Silicon as catalytic material at bottom deposited for 3 min, CH4 flow with 3 sccm, CuC process time of 120 seconds, annealing temperature at 900℃ and annealing time of 60 minutes which direct growth on copper foils can be used as anode material for lithium-ion batteries.

中文摘要 I
ABSTRACT II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章、緒論 1
1.1 前言 1
1.2 石墨烯於負極材料之優勢 1
1.3 石墨烯概述 2
1.4 石墨烯之結構 3
1.5 石墨烯特性 5
1.5.1 電學特性 5
1.5.2 光學特性 5
1.5.3 熱學特性 5
1.5.4 力學特性 6
1.6 研究動機 6
第二章、文獻探討 8
2.1 石墨烯製備方法 8
2.1.1 機械剝離法 8
2.1.2 氧化還原法 9
2.1.3 碳化矽磊晶成長法 10
2.1.4 化學氣相沉積法 11
2.2 石墨烯的成長機制 15
2.2.1 表面沉積 (Surface deposition) 16
2.2.2 析出 (Segregation) 17
2.3 石墨烯的分析 18
2.3.1 X射線繞射分析 (X-Ray Diffraction, XRD) 18
2.3.2 拉曼光譜分析(Raman spectrum) 19
2.4 反應式磁控濺鍍 20
2.4.1 濺鍍 (Sputtering) 20
2.4.2 電漿 (Plasma) 20
2.4.3 反應式濺鍍 (Reactive sputtering) 22
2.4.4 磁控濺鍍 (Magnetron sputtering) 22
2.5 蝕刻技術 23
第三章、實驗流程與儀器介紹 24
3.1 實驗規劃 24
3.1.1 石墨烯製備架構 24
3.1.2 實驗條件 25
3.1.3 試片製備流程 28
3.2 實驗材料 31
3.3 實驗設備與量測儀器 32
3.3.1 反應式磁控濺鍍系統 32
3.3.2 快速熱退火 34
3.3.3 X射線繞射分析儀 35
3.3.4 拉曼光譜儀 35
3.3.5 場發射掃描式電子顯微鏡 36
第四章、結果與討論 37
4-1 實驗分析 37
4.1.1 X射繞線分析 37
4.1.2 拉曼光譜分析 38
4.1.3催化材料銅與矽在不同位置時之影響 39
4.1.4 催化層材料濺鍍時間之影響 42
4.1.5 退火溫度之影響 45
4.1.6 持溫時間之影響 48
4.1.7 碳源氣體流量之影響 51
4.1.8 銅碳濺鍍時間之影響 54
五、結論與未來展望 57
5.1 結論 57
5.2 未來展望 58
參考文獻 59


1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva A. A. Firsov, Electric field effect in atomically thin carbon films," science, Vol.306, No.5696, pp.666-669, 2004.
2.J. Hass, W. De Heer E. Conrad, "The growth and morphology of epitaxial multilayer graphene," Journal of Physics: Condensed Matter, Vol.20, No.32, p.323202, 2008.
3.J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman W. J. Blau, "Broadband nonlinear optical response of graphene dispersions," Advanced Materials, Vol.21, No.23, pp.2430-2435, 2009.
4.A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao C. N. Lau, "Superior thermal conductivity of single-layer graphene," Nano letters, Vol.8, No.3, pp.902-907, 2008.
5.Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill P. Avouris, "100-GHz transistors from wafer-scale epitaxial graphene," Science, Vol.327, No.5966, p.662, 2010.66
6.C. Lee, X. Wei, J. W. Kysar J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," science, Vol.321, No.5887, pp.385-388, 2008.
7.朱宏偉, 徐志平 謝丹, "石墨烯-結構、製備方法與性能表徵," Journal, No.Issue, 2011.
8.F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson K. Novoselov, "Detection of individual gas molecules adsorbed on graphene," Nature materials, Vol.6, No.9, pp.652, 2007.
9.A. C. Neto, "Francisco Guinea and Nuno Miguel Peres. Drawing conclusions from graphene," Physics World, Vol.19, No.11, p.33, 2006.
10.C. Kittel, "Introduction to solid state physics, John Wiley & Sons," Inc., New York, 2005.
11.X. Cheng, N. Dong, B. Li, X. Zhang, S. Zhang, J. Jiao, W. J. Blau, L. Zhang J. Wang, "Controllable broadband nonlinear optical response of graphene dispersions by tuning vacuum pressure," Optics Express, Vol.21, No.14, pp.16486-16493, 2013.
12.H. J. Yoon, J. H. Yang, Z. Zhou, S. S. Yang M. M.-C. Cheng, "Carbon dioxide gas sensor using a graphene sheet," Sensors and Actuators B: Chemical, Vol.157, No.1, pp.310-313, 2011.
13.M. D. Stoller, S. Park, Y. Zhu, J. An R. S. Ruoff, "Graphene-based ultracapacitors," Nano letters, Vol.8, No.10, pp.3498-3502, 2008.
14.P. Blake, E. Hill, A. Castro Neto, K. Novoselov, D. Jiang, R. Yang, T. Booth A. Geim, "Making graphene visible," Applied physics letters, Vol.91, No.6, pp.063124, 2007.
15.G. Eda, G. Fanchini M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nature nanotechnology, Vol.3, No.5, p.270, 2008.
16.C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass A. N. Marchenkov, "Electronic confinement and coherence in patterned epitaxial graphene," Science, Vol.312, No.5777, pp.1191-1196, 2006.
17.M. W. Sprinkle, "Epitaxial graphene on silicon carbide: Low-vacuum growth, characterization, and device fabrication," Georgia Institute of Technology, 2010.
18.S. Park R. S. Ruoff, "Chemical methods for the production of graphenes," Nature nanotechnology, Vol.4, No.4, p.217, 2009.
19.J. Vaari, J. Lahtinen P. Hautojärvi, "The adsorption and decomposition of acetylene on clean and K-covered Co (0001)," Catalysis letters, Vol.44, No.1-2, pp.43-49, 1997.
20.E. Rut’kov A. Y. Tontegode, "Interaction of silver atoms with iridium and with a two-dimensional graphite film on iridium: Adsorption, desorption, and dissolution," Physics of the Solid State, Vol.46, No.2, pp.371-377, 2004.
21.J. Coraux, A. T. N ‘Diaye, C. Busse T. Michely, "Structural coherency of graphene on Ir (111)," Nano letters, Vol.8, No.2, pp.565-570, 2008.
22.D. E. Starr, E. M. Pazhetnov, A. I. Stadnichenko, A. I. Boronin S. K. Shaikhutdinov, "Carbon films grown on Pt (1 1 1) as supports for model gold catalysts," Surface science, Vol.600, No.13, pp.2688-2695, 2006.
23.A. V. De Parga, F. Calleja, B. Borca, M. Passeggi Jr, J. Hinarejos, F. Guinea R. Miranda, "Periodically rippled graphene: growth and spatially resolved electronic structure," Physical review letters, Vol.100, No.5, p.056807, 2008.
24.S. Marchini, S. Günther J. Wintterlin, "Scanning tunneling microscopy of graphene on Ru (0001)," Physical Review B, Vol.76, No.7, p.075429, 2007.
25.P. W. Sutter, J.-I. Flege E. A. Sutter, "Epitaxial graphene on ruthenium," Nature materials, Vol.7, No.5, p.406, 2008.
26.P. R. Somani, S. P. Somani M. Umeno, "Planer nano-graphenes from camphor by CVD," Chemical Physics Letters, Vol.430, No.1, pp.56-59, 2006.
27.K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," nature, Vol.457, No.7230, p.706, 2009.
28.S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim Y. I. Song, "Roll-to-roll production of 30-inch graphene films for transparent electrodes," Nature nanotechnology, Vol.5, No.8, p.574, 2010.
29.C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong F.-R. Chen, "Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition," Nano letters, Vol.11, No.9, pp.3612-3616, 2011.
30.A. Obraztsov, E. Obraztsova, A. Tyurnina A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, Vol.45, No.10, pp.2017-2021, 2007.
31.A. N. Obraztsov, A. V. Tyurnina, E. A. Obraztsova, A. A. Zolotukhin, B. Liu, K.-C. Chin A. T. Wee, "Raman scattering characterization of CVD graphite films," Carbon, Vol.46, No.6, pp.963-968, 2008.
32.Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, Vol.93, No.11, pp.113103, 2008.
33.C.-F. Chang, Q. D. Truong J.-R. Chen, "Graphene as excellent support for rapid and efficient near infrared-assisted tryptic proteolysis," Colloids and surfaces. B, Biointerfaces, Vol.104, pp.221-228, 2013.
34.P. Kim, T. W. Odom, J.-L. Huang C. M. Lieber, "Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states," Physical review letters, Vol.82, No.6, p.1225, 1999.
35.A. C. Ferrari, "Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid state communications, Vol.143, No.1-2, pp.47-57, 2007.
36.W. Xueshen, L. Jinjin, Z. Qing, Z. Yuan, Z. Mengke L. Yonggang, "Controlled synthesis of single-crystalline graphene," AIP Advances, Vol.4, No.3, p.031314, 2014.
37.B. Chapman, "Glow Discharge Processes," Journal, No.Issue, 1980.
38.劉家綸, "以 CUDA 平行運算設計 Al2O3/Pt/Al2O3/Ti 多層膜結構應用於太陽光熱選擇性吸收膜之研究與製作," 高雄, 2013.
39.P. P. Tsai, J. R. Roth W. Chen, "Strength, surface energy, and ageing of meltblown and electrospun nylon and polyurethane (PU) fabrics treated by a one atmosphere uniform glow discharge plasma (OAUGDP™)," Textile research journal, Vol.75, No.12, pp.819-825, 2005.
40.M. Ohring, "The Materials Science of Thin Solid Films," Journal, No.Issue, 1992.
41.鄭家年, "W/WOX 薄膜應用於太陽光熱選擇性吸收膜之研究與製作," 高雄, 2012.
42.P. Ko, H. Takahashi, S. Koide, H. Sakai, T. Thu, H. Okada A. Sandhu. Simple method to transfer graphene from metallic catalytic substrates to flexible surfaces without chemical etching. in Journal of Physics: Conference Series. 2013. IOP Publishing

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊