跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 03:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張凱翔
研究生(外文):ZHANG, KAI-XIANG
論文名稱:電鍍成長氧化鋅奈米柱之研究
論文名稱(外文):Growth of Zinc Oxide Nanopillar by Electrodeposition
指導教授:高宗達
指導教授(外文):KAO, TZUNG-TA
口試委員:張金龍楊誌欽葉蕙溱郭文正
口試委員(外文):CHANG, CHIN-LUNGYANG, CHIH-CHINYEH, HUI-CHENKUO, WEN-CHENG
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:89
中文關鍵詞:陽極氧化鋁鋅置換溶膠-凝膠氧化鋅晶種層氧化鋅奈米柱
外文關鍵詞:AAOZincatedsol-gel zinc oxide seed layerzinc oxide nanopillar
相關次數:
  • 被引用被引用:1
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要使用陽極氧化鋁模板(AAO)來製備氧化鋅奈米柱。首先將鋁基板表面進行拋光,目的是為了去除鋁金屬因機械加工所產生之表面缺陷,再利用磷酸與草酸之混合溶液做為電解液,在低溫下進行陽極氧化處理,來製造陽極氧化鋁模板。接著依序再進行混酸、草酸及硫酸降電流的薄化製程,以減少陽級氧化鋁模板底部阻障層的厚度。薄化後的阻障層再利用反向電壓在氯化鉀溶液中進行陽極氧化鋁模板底部阻障層穿孔,在氯化鉀反向電壓製程中,利用0.5M濃度的氯化鉀當電解液,並在-3V電壓下持壓20分鐘,環境溫度為攝氏2度。

穿孔後的陽極氧化鋁模板接著浸泡在溫度為40度的5wt%磷酸溶液中進行擴孔處理,擴孔20分鐘後使得孔壁間距擴大為約200 nm。之後將擴孔後的試片做鋅置換處理來生長氧化鋅或以溶膠凝膠氧化鋅當作生長奈米柱的晶種層。

鋅置換浸鋅是鋁電鍍前最為簡便的表面處理方式,鋅置換層與鋁表面有良好的結合性,將鋁置換成鋅層,降低電鍍所需的氧化還原電位。在經過鋅置換處理後的陽極氧化鋁模板,分別比較以水熱合成法及電鍍來生長氧化鋅奈米柱,不過在實驗後發現在水熱合成法中氧化鋅生長得較為紊亂,從中無法辨別氧化鋁及氧化鋅奈米柱,而在鋅置換後的電鍍中發現氧化鋅無法生長得很密實,因此接下來用另一種方式為以溶膠-凝膠氧化鋅當作生長奈米柱的晶種層。

以溶膠-凝膠法在陽極氧化鋁模板上製備生長氧化鋅奈米柱的氧化鋅晶種層,溶液則是使用醋酸鋅作為溶質、無水乙醇作為溶劑、乙醇胺作為穩定劑,將0.7M的氧化鋅溶液滴在整片氧化鋁基板上並靜置2分鐘,再透過旋轉塗佈法沉積氧化鋅薄膜,沉積完再經過退火處理。然而氧化鋅在氧化鋁表面當作底部晶種層後,能夠成功的以電鍍法製作氧化鋅奈米柱。

In this study, zinc oxide nanopillar is fabricated by electrodeposition method on the anodic aluminum oxide(AAO) template. First, the aluminum substrate is electropolished to remove surface defects caused by mechanical process of the metal. Anodic aluminum oxide template is produced by anodizing at a low temperature using a mixed solution of phosphoric acid and oxalic acid as an electrolytic solution. The AAO template is subsequently subjected to current reduction processes, followed by a sequence of oxalic acid and sulfuric acid to reduce the thickness of the barrier layer. Lastly, the cathodic polarization in KCl shows a clear through hole of bottom barrier after 20 minutes at 2℃ under 3 volt.
The perforated AAO template is then immersed in a 5 wt% phosphoric acid solution at a temperature of 40 degrees for reaming. After reaming for 20 minutes, the hole is enlarged to 200 nm. The reamed AAO is then subjected to zincated or sol-gel zinc oxide seed layer to grow ZnO nanopillar.
Zincated is the easiest way to deal with aluminum plating. Zincated has a good bond with the aluminum surface, replacing aluminum with a zinc layer, reducing the redox potential required for electroplating. The zinc oxide nanopillars were grown by hydrothermal synthesis and electroplating on the zincated AAO templates. However, it was found that the growth was randomly in the hydrothermal synthesis method. By contrast, the electroplating on zincated AAO template didn’t show densely grown ZnO nanopillars, so the sol-gel zinc oxide as the seed layer is used for the growth of ZnO nanopillar.
Sol was prepared by zinc acetate as the precursor, ethanol as the solvent for dissolving the zinc oxide and monoethanolamine(MEA) as the stabilizer, and was deposited by spin coating. A 0.7 M zinc oxide solution was dropped on the AAO for 2 minutes, and then a Zinc Oxide film was deposited by spin coating, and then deposited and annealing. Finally, Zinc Oxide nanopillars can be successfully electroplated within the channels of AAO template using sol-gel ZnO as a bottom seed layer.

中文摘要 I
Abstract III
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 4
1.4 研究架構 5
第二章 實驗理論 6
2.1 電化學拋光 6
2.1.1 電化學拋光原理 7
2.2 陽極氧化鋁 9
2.2.1 陽極氧化鋁結構 10
2.2.2 陽極氧化鋁成長機制 11
2.3 氧化鋅 14
2.3.1 氧化鋅的發光機制 15
2.3.2 氧化鋅薄膜製備方式 15
2.4 溶膠-凝膠法( So l-gel met hod ) 17
2.4.1 溶膠-凝膠法原理 17
2.4.2 溶膠-凝膠法過程 18
2.5 旋轉塗佈法( Spin-coating method) 20
2.6 鋅置換 22
2.7 電鍍 23
2.7.1 電鍍氧化鋅之機制 23
2.7.2 影響電鍍均勻厚度的因素 23
第三章 實驗方法與步驟 26
3.1 實驗目的 26
3.1.1 實驗耗材及藥品清單 27
3.2 實驗儀器設備 28
3.2.1 多功能電源電錶(Keithley SourceMeter 2400) 28
3.2.2 超音波震盪器 29
3.2.3 電磁加熱攪拌器(PC-420D) 29
3.2.4 旋轉塗佈機 30
3.2.5 管狀高溫爐 31
3.2.6 恆電位電流儀(Autolab) 32
3.3 量測儀器 33
3.3.1 高解析掃描電子顯微鏡(Ultrahigh Resolution Scanning Electron Microscope,
HR-SEM) 33
3.4 實驗規畫 34
3.4.1 試片拋光處理 35
3.4.2 陽極氧化處理 36
3.4.3 薄化微結構及微結構穿孔製程 37
3.4.4 氧化鋅晶種層製備 38
3.4.5 移除鋁基板 40
第四章 實驗結果與討論 41
4.1 陽極氧化鋁模板實驗 41
4.1.1 陽極氧化鋁 41
4.1.2 薄化底部阻障層 42
4.1.3 反向電壓阻障層穿孔 44
4.1.4 擴孔陽極氧化鋁 46
4.2 氧化鋁經鋅置換生長氧化鋅奈米柱 47
4.2.1 鋅置換後利用水熱法生長氧化鋅奈米柱 48
4.2.2 鋅置換後利用電鍍生長氧化鋅奈米柱 49
4.3 溶膠凝膠氧化鋅晶種層生長氧化鋅奈米柱 50
4.3.1 溶膠凝膠氧化鋅晶種層在陽極氧化鋁模板上 52
4.3.1.1 經靜置後旋轉圖佈氧化鋅在陽極氧化鋁模板上 53
4.3.1.2 經抽真空旋轉圖佈氧化鋅在陽極氧化鋁模板上 58
4.3.1.3 氧化鋅沉積在氧化鋁模板的EDS分析 59
4.3.2 電鍍氧化鋅奈米柱 61
第五章 結論 66
參考文獻 67
[1]Abdelaadim Danine , Jonathan Schoenleber , Jaafar Ghanbaja , François
Montaigne , Clotilde Boulanger and Nicolas Stein, “Microstructure and
thermoelectric properties of p-type bismuth antimony telluride nanowires
synthetized by template electrodeposition in polycarbonate membranes,”
Electrochimica Acta, Vol 279, Pages 258-268, 2018.
[2]Chengyong Li, Lei Hea, Shiqi Jiang, Rijian Mo, Xiemin Yan, Zhong-Ji Qian,
Chunxia Zhou, Shengli Sun, Pengzhi Hong, Yujun Huang, “Ultrasensitive
detection of microRNA using an array of Au nanowires deposited within the
channels of a porous anodized alumina membrane,” Electrochemistry
Communications, Vol 102, Pages 19-24, 2019.
[3]Hideki Hashimoto, Sumire Kojima, Takashi Sasaki, Hidetaka Asoh, “α-Alumina
membrane having a hierarchical structure of straight macropores and
mesopores inside the pore wall,” Journal of the European Ceramic Society,
Vol 38, Issue 4, Pages 1836-1840, 2018.
[4]Y. Li, L. Xu, X. Li, X. Shen, and A. Wang, “Effect of aging time of ZnO
sol on the structural and optical properties of ZnO thin films prepared by
sol–gel method,” Applied Surface Science, Vol. 256, No. 14, pp. 4543-4547,
2010.
[5]S.B.Yahia, L.Znaidi,A.Kanaev,andJ.P.Petitet, “Raman study of oriented
ZnO thin films deposited by sol–gel method,” Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy, Vol. 71, No. 4, pp. 1234-1238,
2008.
[6]E.J.Ibanga, C. Le Luyer, and J. Mugnier, “Zinc oxide waveguide produced by
thermal oxidation of chemical bath deposited zinc sulphide thin films,”
Materials Chemistry and Physics, Vol. 80, No. 2, pp. 490-495, 2003.
[7]T. Minami, H. Nanto, S. Shooji, and S. Takata, “The stability of zinc oxide
transparent electrodes fabricated by R.F. magnetron sputtering,” Thin Solid
Films, Vol.11, No. 2, pp. 167-174, 1984.
[8]S. Tabassum, E. Yamasue, H. Okumura, and K. N. Ishihara, “Electrical
stability of Al-doped ZnO transparent electrode prepared by sol-gel
method,” Applied Surface Science, Vol. 377, pp. 355-360, 2016.
[9]S.Krishnamoorthy and A. A. Iliadis, “Properties of high sensitivity ZnO
surface acoustic wave sensors on SiO2/(1 0 0) Si substrates,” Solid-State
Electronics, Vol. 52, No. 11, pp. 1710-1716, 2008.
[10]I. Y. Bu, “Self-assembled, wrinkled zinc oxide for enhanced solar cell
performances,” Materials Letters, Vol. 122, pp. 55-57, 2014.
[11]H. Masuda, K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step
Replication of Honeycomb Structure of Anodic Alumina,” Science, New
Series, Vol.268, pp.1466-1468,1995.
[12]O. Jessensky, F. Müller, U. Gösele, “Self Organized Formation of Hexagonal
Pore Arrays in Anodic Alumina,”Applied. Physics. Letters., Vol. 72,
pp.1173-1175 ,1998.
[13]A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore
arrays with a 50–420 nm interpore distance formed by self-organization in
anodic alumina,”J. Applied. Physics. Vol. 84, pp.6023–6026 ,1998.
[14]K. Nielsch, F. Müller, A. P. Li, and U. Gösele, “Uniform Nickel
Deposition into Ordered Alumina Pores by Pulsed Electrodeposition,”
Advanced Materials, vol.12, pp.582-586, 2000.
[15]X. Zhao, S.K.Seo, U.J.Lee, and K.H.Lee, “Controlled Electrochemical
Dissolution of Anodic Aluminum Oxide for Preparation of Open-Through Pore
Structures,”Journal of The Electrochemical Society, Vol.154 (10), pp.
C553-C557, 2007.
[16]Z. L. Wang, “Splendid One-Dimensional Nanostructures of Zinc Oxide: A New
Nanomaterial Family for Nanotechnology,” American Chemical Society, vol.2
pp.1987-1992, 2008.
[17]M. Chaari, and A. Matoussi, “Electrical conduction and dielectric studies
of ZnO pellets,” Physica B: Condensed Matter, vol. 407, pp. 3441-3447,
2012.
[18]Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, and M. A. Reshchikov, “A
comprehensive review of ZnO materials and devices,” Journal of Applied
Physics, vol. 98, 041301, 2005.
[19]D.Banerjee, J.Y. Lao, D.Z. Wang, J.Y. Huang, Z.F. Ren, D. Steeves,
B. Kimball, M. Sennett, “Large-quantity free-standing ZnO nanowires,”
Applied.Physics.Letters., 83, 2061‒2063, 2003.
[20]Y.B. Hahn, “Zinc oxide nanostructures and their applications,” Korean
Journal of Chemical Engineering., 28, 1797‒1813, 2011.
[21]T. Frade, Melo, M.E. Jorge, A. Gomes, “One-dimensional ZnO nanostructured
films effect of oxide nanoparticles,” Materials Letters., 82, 13‒15, 2012.
[22]R. Wahab, S.G. Ansari, Y.S. Kim, H.K. Seo, H.S. Shin, “Room temperature
synthesis of needle-shaped ZnO nanorods via sonochemical method,” Applied.
Surface Science, 253, 7622‒7626. 105, 2007.
[23]X. Kong, Y. Ding, R. Yang, Z.L. Wang “Single-crystal nanorings formed by
epitaxial self-coiling of polar-nanobelts,” Science., 303, 1348‒1351,
2004.
[24]W.S. Chiua, P.S. Khiew, M. Clokea, D. Isaa, T.K. Tana, S. Radimanb,
R. Abd-Shukorb, M.A. Abd–Hamid, N.M. Huangc, H.N. Limd, et al.
“Photocatalytic study of two-dimensional ZnO nanopellets in the
decomposition of methylene blue,” Chemical Engineering Journal., 158, 345‒
352, 2010.
[25]Jose-Yacaman, M, Gutierrez-Wing, C., Miki, M., Yang, D.Q, Piyakis, K.N,
Sacher, E. “Surface diffusion and coalescence of mobile metal
nanoparticles,”Journal. Physical Chemistry B., 109, 9703‒9711, 2005.
[26]Polshettiwar, V, Baruwati, B, Varma, R.S. “Self-asssembly of metal oxides
into three-dimensional nanostructures: Synthesis and application in
catalysis,” ACS Nano, 3, 728‒736, 2009.
[27]Q. Xie, Z. Dai, J. Liang, L. Xu, W. Yu, Y. Qian, “Synthesis of ZnO
three-dimensional architectures and their optical properties,” Solid State
Commun., 136, 304‒307. 106, 2005.
[28]J. Liu, X. Huang, Y. Li, Sulieman, K.M.,F Sun, X. He, “Selective growth
and properties of zinc oxide nanostructures,” Scripta. Materialia., 55,
795‒798, 2006.
[29]R. A. Berner and K. A. Maasch, “Chemical weathering and controls on
atmospheric O2 and CO2: Fundamental principles were enunciated by J.J.
Ebelmen in 1845,” Geochimica et Cosmochimica Acta, Vol. 60, No. 9, pp.
1633-1637, 1996.
[30]G. Walter and B. Edwin, “Method for producing layers on solid objects, ”
ed: Google Patents, 1945.
[31]H. Schroeder, “Oxide layers deposited from organic solutions, ” Physics of
thin films, Vol. 5, pp. 87-141, 1969.
[32]Bolla G. Rao, Deboshree Mukherjee, Benjaram M.Reddy, “Chapter 1—Novel
approaches for preparation of nanoparticles, ” Nanostructures for Novel
Therapy, Synthesis, Characterization and Applications Micro and Nano
Technologies , Pages 1-36, 2017.
[33]Metals Handbook, “Metallography and microstructures,” American Society of
Metal, vol.9, pp. 48-56, 1985.
[34]P.A. Jacquet, “Electrolytic Polishing of Metallic Surfaces,” Metal Finish,
vol.47, pp. 48-54, 1949.
[35] P.V.Schigolev, “Electrolytic and chemical polishing of metal,” Freund,
Holon, Israel, 1970.
[36]A. M. M. Jani, D. Losic , and N. H. Voelcker, “Nanoporous anodic
aluminium oxide: Advances in surface engineering and emerging
applications,” Progress in Materials Science, vol. 58. pp. 636-704, 2013.
[37]G . E.Thompson, “Porous anodic alumina: fabrication, characterization and
applications,” Thin Solid Films, vol. 297, pp. 192-201, 1997.
[38]J.-L. Lee, M.-H.Chen, K.-H.Wang, and S.-H. Wu, “Effect of Operating
Variables on the Preparation of Ordered Anodic Porous Alumina Template”,
Department of chemical engineering and material engineering Lunghwa
University of Science and Technology, vol. 30, 2010.
[39]T. Ohgai, X. Hoffer, L. Gravier, J. E. Wegrowe, and J. P. Ansermet,
“Bridging the gap between template synthesis and microelectronics: spin-
valves and multilayers in self-organized anodized aluminium nanopores,”
Nanotechnology, vol. 14, no. 9, 2003.
[40]X. Wu, G. Siu, C. Fu, and H. Ong, “Photoluminescence and
cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO
films,” Applied Physics Letters, Vol. 78, No. 16, pp. 2285-2287, 2001.
[41]D. Gupta, M. Anand, S. W. Ryu, Y.-K. Choi, and S. Yoo, “Nonvolatile memory
based on sol-gel ZnO thin-film transistors with Ag nanoparticles embedded
in the ZnO/gate insulator interface,” Applied Physics Letters, Vol. 93,
No.22, p.224106, 2008.
[42]S. Pati, “Highly textured ZnO thin films grown using sol-gel route for gas
sensing application,” Journal of Alloys and Compounds, Vol. 695, pp. 3552-
3558, 2017.
[43]L. Zhu and W. Zeng, “Room-temperature gas sensing of ZnO-based gas sensor:
A review,” Sensors and Actuators A: Physical, Vol. 267, pp. 242-261, 2017.
[44]R. Anandhi, R. Mohan, K. Swaminathan, and K. Ravichandran, “Influence of
aging time of the starting solution on the physical properties of fluorine
doped zinc oxide films deposited by a simplified spray pyrolysis
technique,” Superlattices and Microstructures, Vol. 51, No. 5, pp. 680-
689, 2012.
[45]J. L. Zhao, X. M. Li, S. Zhang, C. Yang, X. D. Gao, and W.D.Yu, “Highly
(002)-oriented ZnO film grown by ultrasonic spray pyrolysis on ZnO-seeded
Si (100) substrate,” Journal of materials research, Vol. 21, No. 9, pp.
2185-2190, 2006.
[46]何建志, “摻雜鋁之 p-type 氧化鋅薄膜特性分析”,國立臺北科技大學,碩士論文,2008.
[47]P. B. Taunk, R. Das, D. P. Bisen, R. K. Tamrakar, and N. Rathor,
“Synthesis optical properties of chemical bath deposited ZnO thin film,”
Karbala International Journal of Modern Science, Vol. 1, No. 3, pp. 159-
165, 2015.
[48]J. Ouerfelli et al., “Properties of ZnO thin films deposited by chemical
bath deposition and post annealed,” Journal of Physics D: Applied Physics,
Vol. 39, No. 9, p. 1954, 2006.
[49]R. Baranyai, A. Detrich, E. Volentiru, and Z. Hórvölgyi, “Preparation and
characterization of ZnO and TiO2 sol-gel thin films deposited by dip
coating,” Hungarian Journal of Industry and Chemistry, Vol. 37, No. 2,
2009
[50]M. Khan, K. Bhatti, R. Qindeel, N. Alonizan, and H. S. Althobaiti,
“Characterizations of multilayer ZnO thin films deposited by sol-gel spin
coating technique,” Results in Physics, Vol. 7, pp. 651-655, 2017.
[51]M. Ohyama, H. Kouzuka, and T. Yoko, “Sol-gel preparation of ZnO films with
extremely preferred orientation along (002) plane from zinc acetate
solution,” Thin Solid Films, Vol. 306, No. 1, pp. 78-85, 1997.
[52]G. Kaur, A.Mitra, and K. L. Yadav, “Pulsed laser deposited Al-doped ZnO
thin films for optical applications,” Progress in Natural Science:
Materials International, Vol. 25, No. 1, pp. 12-21, 2015.
[53]S. Venkatachalam, Y. Iida, and Y. Kanno, “Preparation and characterization
of Al doped ZnO thin films by PLD,” Superlattices and Microstructures,
Vol. 44, No. 1, pp. 127-135, 2008.
[54]D. Agarwal et al., “Synthesis and characterization of ZnO thin film grown
by electron beam evaporation,” Journal of applied physics, Vol. 99, No.
12, p.123105, 2006.
[55]X. Li, S. Asher, B. Keyes, H. Moutinho, J. Luther, and T. Coutts, “p-type
ZnO thin films grown by MOCVD,” in Photovoltaic Specialists Conference,
Conference Record of the Thirty-first IEEE, 2005, pp. 152-154: IEEE, 2005.
[56]M. Barankin, E. Gonzalez Ii, A. Ladwig, and R. Hicks, “Plasma-enhanced
chemical vapor deposition of zinc oxide at atmospheric pressure and low
temperature,” Solar energy materials and solar cells, Vol. 91, No. 10, pp.
924-930, 2007.
[57]C. J. Brinker and G. W. “Scherer,Sol-Gel Science,CHAPTER 1” -Introduction,
Academic Press, San Diego, pp. xvi-18, 1990.
[58]K. P. Misra, R. Shukla, A. Srivastava, and A. Srivastava, “Blueshift in
optical band gap in nanocrystalline Zn 1− x Ca x O films deposited by sol-
gel method,” Applied Physics Letters, Vol. 95, No. 3, p. 031901, 2009.
[59]M. Wang, J. Wang, W. Chen, Y. Cui, and L. Wang, “Effect of preheating and
annealing temperatures on quality characteristics of ZnO thin film
prepared by sol–gel method,” Materials Chemistry and Physics, Vol. 97, No.
2, pp. 219-225, 2006.
[60]Hewitson E.H.,’’Eastman Kodak Co’’, US.Pat.1 627-900, 1927.
[61]洪委成,“鋁合金無電鍍鎳製程探討與表面特性研究”,國立高雄應用科技大學,機械與精密
工程研究所碩士論文, 2008.
[62]Straumanis M.E.,et al, “Electrochem. Soc.”, Vol.95.pp.98, 1949.
[63]Streicher M.A., J “Electrochem. Soc.” , Vol.93.pp.285.Vol.96.pp,170,1948.
[64]S. Court, C. Kerr, C. Ponce de León, J. R. Smith , B. D. Barker and F. C.
Walsh, “Monitoring of zincate pre-treatment of aluminium prior to
electroless nickel plating,” The International Journal of Surface
Engineering and Coatings, Vol 95, No.2, 2017.
[65]張玉珊,“以電鍍法製備氧化鋅薄膜之探討”,國立高雄海洋科技大學,微電子工程研究所碩
士論文, 2012.
[66]M. Izaki, T. Omi, “Transparent Zinc Oxide Films Chemically Prepared from
Aqueos Solution,” Journal of the Electrochemical Society. 144(L3-L5),
1997.
[67]S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated
Annealing,” Science, 10.1126/science.220.4598.671 Vol. 220, No. 4598, p.
671, 1983.
[68]蕭典倫,“陽極氧化鋁底部阻障層薄化之研究”, 國立高雄第一科技大學,電機工程研究所碩
士班,2015.
[69]陳晉宇,“陽極氧化參數對陽極氧化鋁微結構影響之研究”, 國立高雄第一科技大學,電機
工程研究所碩士班,2017.
[70]G. K. Paul and S. K. Sen, “Sol–gel preparation, characterization and V
studies on electrical and thermoelectrical properties of gallium doped
zinc oxide films,” Materials Letters, Vol. 57, No. 3, pp. 742-746, 2002.
[71]I. Y. Bu, “Sol–gel production of wrinkled fluorine doped zinc oxide
through hydrofluride acid,” Ceramics International, Vol. 40, No. 9, pp.
14589-14594, 2014.
[72]徐國榮、任鳳蓮、司士輝、易清風,“多孔陽極氧化鋁模板電化學法阻擋層的研究”,Acta
Phys. –Chim. Sin., Vol. 22(3), pp. 341~344, 2006.
[73]Arun Augustinn, Prashant Huilgol, K. Rajendra Udupa, Udaya Bhat K, “Effect
of current density during electrodepositionon microstructure and hardness
of textured Cu coating in the application of antimicrobial Al touch
surface”, Journal of the Mechanical behavior of biomedical materials
63(2016) 352-360, 2016.
[74]Nakata, T., Wade, I., Imai, H., Ikejima, K. Inoue, K., Watanabe,T,
“Zincate Treatment and Electroless Ni-P Plating on Al Single-Crystal
Surface,” Journal of The Surface Finishing Society of Japan,48, 820, 1997.
[75]邱奕淵,“利用陽極氧化鋁模板製造高次序氧化鋅奈米柱之研究”, 國立高雄第一科技大
學,光電工程研究所碩士班, 2012.
[76]陳麒喨,“溶膠-凝膠法製備高透明度及表面平坦之氧化鋅薄膜”,國立高雄科技大學,電機
工程研究所碩士班, 2018.
[77]S. J. Kwon, J.-H. Park, and J.-G. Park, “Wrinkling of a sol-gel-derived
thin film,” Physical Review E, Vol. 71, No. 1, p. 011604, 2005.


電子全文 電子全文(網際網路公開日期:20240814)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top