( 您好!臺灣時間:2023/12/11 21:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Liao, Tsung-I
論文名稱(外文):Development of a Medical Space Cleaning Robot with Path Planning and Travel Offset Correction Capability
指導教授(外文):Chen, Wen-Ping
口試委員(外文):Cho, Ming-YuanLee, Tsair-FwuHuang, Chung-FahWang, Kun-ChingMeen, Teen-HangChen, Wen-Ping
外文關鍵詞:cleaning robotPath PlanningROS
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:1

Including the medical institutions, the cleaning of large-scale public spaces is currently performed by workers driving large cleaning machines entrusted by companies, and it takes a lot of manpower to carry out day and night. Therefore, this study proposes a cleaning robot that maps large indoor spaces using laser scanning and planning the space of cleaning path automatically. The study uses the extended features of the Robot Operating System (ROS) to perform spatial clean path planning and path modification using Light Detection and Ranging (LIDAR) and infrared Sensor. The left and right primary wheels are designed to allow the robot may turn around in the field, and the distance values measured by the infrared sensor is used to assist the movement of the straight line, edge, and the steering, and the boustrophedon path.
The experiment result at hospital’s area was shown that the map scanning construction, path planning, and various path tests required to consider the actual conditions of the cleaning robot can be successfully completed. In the future, it will replace the cleaning work in the public facilities, and can be used for automatic cleaning and inspection of large indoor spaces to solve problems such as labor shortages and overwork, and reduce infections caused by medical environment and space problems

摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
符號說明 x
第一章 緒 論 1
1.1研究背景 1
1.2 研究動機與目的 4
第二章 國內外發展現況 7
2.1國內外機器人研究演進 7
2.2 服務型機器人發展與研究 9
2.2.1掃地機器人 11
2.2.2巡檢機器人 14
2.3即時定位與地圖構建(SLAM) 15
2.4光學雷達原理 17
2.5機器人作業系統(ROS) 18
2.6醫療院所測試空間介紹 20
2.7 小結 23
第三章 系統架構 24
3.1 機器人硬體設計 24
3.1.1機構與底盤配置 25
3.1.2驅動馬達 26
3.1.3機器人驅動控制設計 28
3.1.4吸塵裝置與掃地馬達 30
3.2 機器人系統架構 32
3.2.1 機器人作業系統(ROS)概念與通訊方式 33
3.2.2 光學雷達(Light Detection and Ranging, LIDAR) 35
3.2.3 距離測量感測器模組 (IR sensor) 38
3.2.4 SLAM 即時定位與地圖建構 39
第四章 規劃與測試 43
4.1 路徑規劃 43
4.1.1 沿邊地圖繪製 44
4.1.2 牛耕田路徑規劃 47
4.1.3 路徑偏移與轉向修正 48
4.2 路徑測試 52
4.2.1 IR sensor準確測試 52
4.2.2 SLAM測試 55
4.2.3 延邊修正測試 57
4.2.4 牛耕田測試 59
4.2.5 轉向測試 62
第五章 結論 63
5.1 結論 63
5.2 未來展望 64
參考文獻 66

1.林幸君, et al., 少子化與高齡化下的臺灣人口預測與經濟分析. 臺灣經濟預測與政策, 2015. 46(1): pp. 113-156.
2.國家發展委員會, 中華民國人口推估(2018至2065年). 2018.
3.Shukla, M. and A.N. Shukla, Growth of robotics industry early in 21st century. International Journal of Computational Engineering Research (IJCER), 2 (5), 2012: pp. 1554-1558.
4.Hagele, M., Double-Digit Growth Highlights a Boom in Robotics [Industrial Activities]. IEEE Robotics & Automation Magazine, 2017. 24(1): pp. 12-14.
5.Čelan, V., I. Stančić, and J. Musić. Cleaning up smart cities—localization of semi-autonomous floor scrubber. in 2016 international multidisciplinary conference on computer and energy science (SpliTech). 2016. IEEE.
6.Liao, T.-I., et al., Development of a high-endurance cleaning robot with scanning-based path planning and path correction. Microsystem Technologies: pp. 1-14.
7.Phuong, D.N. and T.P. Chi. A Hybrid Indoor Localization System Running Ensemble Machine Learning. in 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). 2018. IEEE.
8.洪儀珍, et al., 醫院環境清潔確效方法之介紹與運用. 感染控制雜誌, 2018. 28(6): pp. 264-273.
9.Eckstein, B.C., et al., Reduction of Clostridium difficile and vancomycin-resistant Enterococcus contamination of environmental surfaces after an intervention to improve cleaning methods. BMC infectious diseases, 2007. 7(1): p. 61.
10.Cohen, B., et al., Association between healthcare-associated infection and exposure to hospital roommates and previous bed occupants with the same organism. Infection Control & Hospital Epidemiology, 2018. 39(5): pp. 541-546.
11.洪儀珍, et al., 運用不同檢測方式評估某醫學中心環境清潔成效. 感染控制雜誌, 2016. 26(3): p. 97-106.
12.Hwang, S.-Y. and J.-B. Song, Monocular vision-based SLAM in indoor environment using corner, lamp, and door features from upward-looking camera. IEEE Transactions on Industrial Electronics, 2011. 58(10): pp. 4804-4812.
13.Gutmann, J.-S., et al. Challenges of designing a low-cost indoor localization system using active beacons. in 2013 IEEE conference on technologies for practical robot applications (TePRA). 2013. IEEE.
14.Chen, P., et al. Ceiling vision localization with feature pairs for home service robots. in 2014 IEEE international conference on robotics and biomimetics (ROBIO 2014). 2014. IEEE.
15.Chung, H.-Y., C.-C. Hou, and Y.-S. Chen, Indoor intelligent mobile robot localization using fuzzy compensation and Kalman filter to fuse the data of gyroscope and magnetometer. IEEE Transactions on Industrial Electronics, 2015. 62(10): pp. 6436-6447.
16.Miah, M.S., J. Knoll, and K. Hevrdejs, Intelligent range-only mapping and navigation for mobile robots. IEEE Transactions on Industrial Informatics, 2017. 14(3): pp. 1164-1174.
17.Jones, J.L., Robots at the tipping point: the road to iRobot Roomba. IEEE Robotics & Automation Magazine, 2006. 13(1): pp. 76-78.
18.Lawitzky, G., A navigation system for cleaning robots. Autonomous Robots, 2000. 9(3): pp. 255-260.
19.Nishida, T., et al. Development of a sensor system for outdoor service robot. in 2006 SICE-ICASE International Joint Conference. 2006. IEEE.
20.Bretl, T. and S. Hutchinson. Robust coverage by a mobile robot of a planar workspace. in 2013 IEEE International Conference on Robotics and Automation. 2013. IEEE.
21.Reinstein, M. and M. Hoffmann, Dead reckoning in a dynamic quadruped robot based on multimodal proprioceptive sensory information. IEEE Transactions on Robotics, 2012. 29(2): pp. 563-571.
22.Zampella, F., A.R.J. Ruiz, and F.S. Granja, Indoor positioning using efficient map matching, RSS measurements, and an improved motion model. IEEE Transactions on Vehicular Technology, 2015. 64(4): pp. 1304-1317.
23.Kang, M.-c., et al., A robust obstacle detection method for robotic vacuum cleaners. IEEE Transactions on Consumer Electronics, 2014. 60(4): pp. 587-595.
24.Rashid, H., et al. Design and development of a DTMF controlled room cleaner robot with two path-following method. in 2016 19th International Conference on Computer and Information Technology (ICCIT). 2016. IEEE.
25.Wei, Z. Design of Control System for Dust-collecting Robot Based on DSP. in 2017 International Conference on Computer Network, Electronic and Automation (ICCNEA). 2017. IEEE.
26.Singh, S., et al. A novel hybrid navigation algorithm for autonomous robotic vacuum cleaners. in 2017 6th International Conference on Computer Applications In Electrical Engineering-Recent Advances (CERA). 2017. IEEE.
27.Jarande, P., et al. Robotic Vacuum Cleaner Using Arduino with Wifi. in 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). 2018. IEEE.
28.Wu, W.-Y. and Y.-C. Liu. Autonomous Guided Robotic Systems in Regulating Indoor Environmental Quality. in 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). 2018. IEEE.
29.Lu, S., et al., Development of a mobile robot for substation equipment inspection. Automation of electric power systems, 2006. 30(13): pp. 94-98.
30.周立辉, et al., 智能变电站巡检机器人研制及应用. 电力系统自动化, 2011. 35(19): pp. 85-88.
31.Lu, S., C. Xu, and R.Y. Zhong, An active RFID tag-enabled locating approach with multipath effect elimination in AGV. IEEE Transactions on Automation Science and Engineering, 2016. 13(3): pp. 1333-1342.
32.Choset, H. and K. Nagatani, Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization. IEEE Transactions on robotics and automation, 2001. 17(2): pp. 125-137.
33.Garulli, A., et al. Mobile robot SLAM for line-based environment representation. in Proceedings of the 44th IEEE Conference on Decision and Control. 2005. IEEE.
34.Wang, D., et al. Lidar Scan matching EKF-SLAM using the differential model of vehicle motion. in 2013 IEEE Intelligent Vehicles Symposium (IV). 2013. IEEE.
35.Lavrenov, R. and A. Zakiev. Tool for 3D Gazebo map construction from arbitrary images and laser scans. in 2017 10th International Conference on Developments in eSystems Engineering (DeSE). 2017. IEEE.
36.Bai, Y.-W. and M.-F. Hsueh. Using an adaptive iterative learning algorithm for planning of the path of an autonomous robotic vacuum cleaner. in The 1st IEEE Global Conference on Consumer Electronics 2012. 2012. IEEE.
37.Choset, H. and P. Pignon. Coverage path planning: The boustrophedon cellular decomposition. in Field and service robotics. 1998. Springer.
38.Khan, A., I. Noreen, and Z. Habib, On Complete Coverage Path Planning Algorithms for Non-holonomic Mobile Robots: Survey and Challenges. J. Inf. Sci. Eng., 2017. 33(1): pp. 101-121.
39.Korkmaz, M. and A. Durdu. Comparison of optimal path planning algorithms. in 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). 2018. IEEE.
40.Toda, Y. and N. Kubota. Path planning using multi-resolution map for a mobile robot. in SICE Annual Conference 2011. 2011. IEEE.

第一頁 上一頁 下一頁 最後一頁 top