跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 22:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳景綸
研究生(外文):CHEN,JING-LUEN
論文名稱:雷射輔助蝕刻型長週期光纖光柵之研製及應用
論文名稱(外文):Implementation and Application of Laser-Assisted Etching Long Period Fiber Gratings
指導教授:江家慶江家慶引用關係
指導教授(外文):CHIANG,CHIA-CHIN
口試委員:江家慶吳兆偉孫迺翔蔣榮生
口試委員(外文):CHIANG,CHIA-CHINWU,ZHAO-WEISUN,NAI-XIANGJIANG,RONG-SHENG
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:315
中文關鍵詞:雷射輔助蝕刻準分子雷射蝕刻長週期光纖光柵尺寸效應溫度感測
外文關鍵詞:laser-assisted etchingexcimer laserwet etchinglong-period fiber grating for size influencetemperature sening
相關次數:
  • 被引用被引用:4
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VIII
表目錄 XXVII
第一章 序論 1
1-1 研究動機 1
1-2 研究背景 2
1-2-1雷射輔助蝕刻製程之文獻回顧 3
1-2-2長週期光纖光柵製程之文獻回顧 16
1-2-3長週期光纖光柵溫度感測之文獻回顧 37
1-3 研究目的 44
第二章 基礎理論 46
2-1長週期光纖光柵基礎理論 46
2-2 耦合模態理論(Coupled-mode Theory) 49
2-3 長週期光纖光柵之耦合模態理論分析 57
2-4 長週期光纖光柵之應變靈敏度分析 63
第三章 研究方法與步驟 66
3-1雷射輔助蝕刻型長週期光纖光柵製程 66
3-1-1單面結構型之長週期光纖光柵雷射製程 67
3-1-2錯位雙面結構型之長週期光纖光柵雷射製程 68
3-1-3階梯結構型之長週期光纖光柵雷射製程 69
3-1-4 D型結構型之長週期光纖光柵雷射製程 71
3-2光纖濕蝕刻製程 73
3-2-1單面結構型之長週期光纖光柵濕蝕刻製程 74
3-2-2錯位雙面結構型之長週期光纖光柵濕蝕刻製程 75
3-2-3階梯結構型之長週期光纖光柵濕蝕刻製程 76
3-2-4 D型結構型之長週期光纖光柵濕蝕刻製程 77
3-3雷射輔助蝕刻型之長週期光纖光柵感測器拉伸實驗 78
3-4雷射輔助蝕刻型之長週期光纖光柵感測器封裝製程 80
3-5雷射輔助蝕刻型之長週期光纖光柵感測器溫度實驗 82
第四章 實驗結果與討論 84
4-1雷射輔助蝕刻之電動微動平台速度 86
4-2雷射輔助蝕刻之蝕刻速率 97
4-3雷射輔助蝕刻之單面結構型長週期光纖光柵拉伸實驗 111
4-3-1單面結構型之準分子雷射能量12 mJ直徑尺寸效應 111
4-3-2單面結構型之準分子雷射能量12 mJ週期尺寸效應 127
4-3-3單面結構型之準分子雷射能量10 mJ直徑尺寸效應 134
4-3-4單面結構型之準分子雷射能量10 mJ週期尺寸效應 150
4-3-5單面結構型之準分子雷射能量8 mJ直徑尺寸效應 157
4-3-6單面結構型之準分子雷射能量8 mJ週期尺寸效應 173
4-3-7雷射輔助蝕刻之單面結構型尺寸效應結果總整理 180
4-4雷射輔助蝕刻之錯位雙面結構型長週期光纖光柵拉伸實驗 181
4-5雷射輔助蝕刻之單面及錯位雙面結構型長週期光纖光柵溫度實驗 193
4-5-1雷射輔助蝕刻之單面結構型長週期光纖光柵溫度實驗 193
4-5-2雷射輔助蝕刻之錯位雙面結構型長週期光纖光柵溫度實驗 199
4-5-3雷射輔助蝕刻長週期光纖光柵之溫度實驗結果總整理 205
4-6雷射輔助蝕刻之階梯結構型長週期光纖光柵拉伸實驗 209
4-6-1階梯結構型之準分子雷射能量12 mJ直徑尺寸效應 209
4-6-2階梯結構型之準分子雷射能量12 mJ直徑尺寸效應結果整理 217
4-6-3階梯結構型之準分子雷射能量10 mJ直徑尺寸效應 219
4-6-4階梯結構型之準分子雷射能量10 mJ直徑尺寸效應結果整理 229
4-6-5階梯結構型之準分子雷射能量8 mJ直徑尺寸效應 231
4-6-6階梯結構型之準分子雷射能量8 mJ直徑尺寸效應結果整理 239
4-6-7雷射輔助蝕刻之階梯結構型尺寸效應結果總整理 241
4-7雷射輔助蝕刻之D型結構型長週期光纖光柵拉伸實驗 242
4-7-1 D型結構型之準分子雷射能量12 mJ直徑尺寸效應 242
4-7-2 D型結構型之準分子雷射能量12 mJ直徑尺寸效應結果整理 250
4-7-3 D型結構型之準分子雷射能量10 mJ直徑尺寸效應 252
4-7-4 D型結構型之準分子雷射能量10 mJ直徑尺寸效應結果整理 260
4-7-5 D型結構型之準分子雷射能量8 mJ直徑尺寸效應 262
4-7-6 D型結構型之準分子雷射能量8 mJ直徑尺寸效應結果整理 268
4-7-7雷射輔助蝕刻之D型結構型尺寸效應結果總整理 270
第五章 結論 272
5-1雷射輔助蝕刻之長週期光纖光柵製程結論 272
5-2雷射輔助蝕刻之單面結構型長週期光纖光柵拉伸實驗結論 273
5-3雷射輔助蝕刻之錯位雙面結構型長週期光纖光柵拉伸實驗結論 274
5-4雷射輔助蝕刻之長週期光纖光柵溫度實驗結論 275
5-5雷射輔助蝕刻之階梯結構型長週期光纖光柵拉伸實驗結論 276
5-6雷射輔助蝕刻之D型結構型長週期光纖光柵拉伸實驗結論 276
第六章 未來展望 277
6-1雷射輔助蝕刻之雙面結構型長週期光纖光柵 277
6-2雷射輔助蝕刻之超結構型光纖光柵 278
6-3雷射輔助蝕刻之環狀結構型長週期光纖光柵 279
參考文獻 280

[1]A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, et al., "Femtosecond laser-assisted three-dimensional microfabrication in silica," Optics Letters, vol. 26, pp. 277-279, 2001.
[2]D. Jiang, S. Xin, R. Wei, and J. Huang, "The application of laser micromachining technology in fiber optic sensing," in MEMS/MOEMS Technologies and Applications II, 2004, pp. 37-47.
[3]K. Zimmer, R. Böhme, and B. Rauschenbach, "Adsorbed layer etching of fused silica by excimer laser with nanometer depth precision," Microelectronic engineering, vol. 78, pp. 324-330, 2005.
[4]H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, and R. Kurosaki, "Surface micro-structuring of silica glass by laser-induced backside wet etching with ns-pulsed UV laser at a high repetition rate," J. Laser Micro/Nanoeng, vol. 1, pp. 39-43, 2006.
[5]S. T. Hendow and S. A. Shakir, "Structuring materials with nanosecond laser pulses," Optics express, vol. 18, pp. 10188-10199, 2010.
[6]J. De Boor, N. Geyer, J. V. Wittemann, U. Gösele, and V. Schmidt, "Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching," Nanotechnology, vol. 21, p. 095302, 2010.
[7]P. Lorenz, M. Ehrhardt, and K. Zimmer, "Laser-induced front side and back side etching of fused silica with KrF and XeF excimer lasers using metallic absorber layers: A comparison," Applied Surface Science, vol. 258, pp. 9742-9746, 2012.
[8]C. Corbari, A. Champion, M. Gecevičius, M. Beresna, Y. Bellouard, and P. G. Kazansky, "Femtosecond versus picosecond laser machining of nano-gratings and micro-channels in silica glass," Optics express, vol. 21, pp. 3946-3958, 2013.
[9]M. Yonemura, S. Kato, K. Hasegawa, and H. Takahashi, "Formation of through holes in glass substrates by laser-assisted etching," Journal of Laser Micro Nanoengineering, vol. 11, p. 143, 2016.
[10]A. Rizzo, E. D. Lemma, F. Pisano, M. Pisanello, L. Sileo, M. De Vittorio, et al., "Laser micromachining of tapered optical fibers for spatially selective control of neural activity," Microelectronic Engineering, vol. 192, pp. 88-95, 2018.
[11]C. A. Ross, D. G. MacLachlan, D. Choudhury, and R. R. Thomson, "Optimisation of ultrafast laser assisted etching in fused silica," Optics express, vol. 26, pp. 24343-24356, 2018.
[12]A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," Journal of lightwave technology, vol. 14, pp. 58-65, 1996.
[13]B.-O. Guan, H.-Y. Tam, S.-L. Ho, S.-Y. Liu, and X.-Y. Dong, "Growth of long-period gratings in H 2-loaded fiber after 193-nm UV inscription," IEEE photonics technology letters, vol. 12, pp. 642-644, 2000.
[14]B. M. Lacquet, P. L. Swart, and G. Ameer, "Long-period grating with sol-gel coating for CO2 detection," in Second European Workshop on Optical Fibre Sensors, 2004, pp. 287-290.
[15]F. Chiavaioli, F. Baldini, and C. Trono, "Manufacturing and spectral features of different types of long period fiber gratings: Phase-shifted, turn-around point, internally tilted, and pseudo-random," Fibers, vol. 5, p. 29, 2017.
[16]S. Schlangen, K. Bremer, Y. Zheng, S. Böhm, M. Steinke, F. Wellmann, et al., "Long-period gratings in highly germanium-doped, single-mode optical fibers for sensing applications," Sensors, vol. 18, p. 1363, 2018.
[17]T. Mizunami and S. Arahira, "A Long-Period Fiber-Grating Sensor Fabricated by Tilted Mask Method Using a Vertical-Cavity Surface-Emitting Laser," in Optical Sensors, 2018, p. SeTh1E. 5.
[18]Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, "Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO 2 laser pulses," Journal of Lightwave Technology, vol. 21, p. 1320, 2003.
[19]L. Gao, T. Zhu, M. Deng, K. S. Chiang, X. Sun, X. Dong, et al., "Long-period fiber grating within D-shaped fiber using magnetic fluid for magnetic-field detection," IEEE Photonics Journal, vol. 4, pp. 2095-2104, 2012.
[20]J. Huang, X. Lan, A. Kaur, H. Wang, L. Yuan, and H. Xiao, "Reflection-based phase-shifted long period fiber grating for simultaneous measurement of temperature and refractive index," Optical Engineering, vol. 52, p. 014404, 2013.
[21]M. Nespereira, J. M. Coelho, and J. M. Rebordão, "Ultrashort Long-Period Fiber Gratings Inscribed on a Single-Mode Fiber for Torsion Sensing Applications," Journal of Sensors, vol. 2018, 2018.
[22]W. Liu, C. Sun, T. Geng, X. Jin, X. Chen, L. Yu, et al., "A New Spring-shaped Long-period Fiber Grating with High Strain Sensitivity," IEEE Photonics Technology Letters, 2019.
[23]H. Kumazaki, Y. Yamada, T. Oshima, S. Inaba, and K. Hane, "Micromachining of optical fiber using reactive ion etching and its application," Japanese Journal of Applied Physics, vol. 39, p. 7142, 2000.
[24]C.-C. Chiang and L. Tsai, "Perfectly notched long-period fiber grating filter based on ICP dry etching technique," Optics letters, vol. 37, pp. 193-195, 2012.
[25]C.-C. Chiang and C.-C. Tseng, "Characterization of notched long-period fiber gratings: effects of periods, cladding thicknesses, and etching depths," Applied optics, vol. 53, pp. 4398-4404, 2014.
[26]M. Śmietana, M. Koba, P. Mikulic, and W. J. Bock, "Measurements of reactive ion etching process effect using long-period fiber gratings," Optics Express, vol. 22, pp. 5986-5994, 2014.
[27]C.-Y. Huang, W.-L. Chan, S.-M. Chuo, J.-H. Chang, L.-L. Chen, and L. A. Wang, "Packaged symmetric/asymmetric corrugated long period fiber gratings for refractive index sensing applications," in 20th International Conference on Optical Fibre Sensors, 2009, p. 75031C.
[28]S. Park, O.-j. Kwon, and Y.-G. Han, "A novel fabrication technique of corrugated long-period fiber gratings for mass production and its transmission characteristic as applied mechanical force," in Asia Communications and Photonics Conference and Exhibition, 2010, pp. 94-95.
[29]Z. Cui, W. Zhang, F. Liu, H. Zhang, Z. Bai, P. Geng, et al., "Asymmetrically corrugated long-period gratings by burning fiber coating and etching cladding," IEEE Photonics Technology Letters, vol. 25, pp. 1961-1964, 2013.
[30]C.-C. Chiang, "Fabrication and characterization of sandwiched optical fibers with periodic gratings," Applied optics, vol. 49, pp. 4175-4181, 2010.
[31]C.-C. Chiang and C.-H. Li, "A packaged, low-cost, robust optical fiber strain sensor based on small cladding fiber sandwiched within periodic polymer grating," Optics Express, vol. 22, pp. 13916-13926, 2014.
[32]Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses," Optics letters, vol. 24, pp. 646-648, 1999.
[33]R. Mata-Chávez, J. Estudillo-Ayala, R. Rojas-Laguna, E. Vargas-Rodriguez, A. Martínez-Rios, I. Torres-Gómez, et al., "Study of temperature sensing in a novel fattened electric arc induced LPFG," in Laser Beam Shaping X, 2009, p. 743014.
[34]A. Singh, D. Engles, A. Sharma, and M. Singh, "Temperature sensitivity of long period fiber grating in SMF-28 fiber," Optik, vol. 125, pp. 457-460, 2014.
[35]Z. Bai, W. Zhang, S. Gao, H. Zhang, L. Wang, and F. Liu, "Bend-insensitive long period fiber grating-based high temperature sensor," Optical Fiber Technology, vol. 21, pp. 110-114, 2015.
[36]J. Tang, S. Pu, L. Luo, and S. Dong, "Simultaneous measurement of magnetic field and temperature based on magnetic fluid-clad long period fiber grating," Journal of the European Optical Society-Rapid publications, vol. 10, 2015.
[37]L. Coelho, J. Santos, P. Jorge, and J. de Almeida, "Low temperature oxidation in air of iron thin films monitored with long period fiber gratings," in Optical Sensors 2017, 2017, p. 102310Y.
[38]张自嘉, 光纤光栅理论基础与传感技术: 科学出版社, 2009.
[39] 林楷翔, "具金屬結構之長週期光纖光柵製作與應用, 國立高雄應用科技大學機械系碩士論文," 2015.
[40] T. Erdogan, "Fiber grating spectra," Journal of Lightwave Technology, vol. 15, pp. 1277-1294, 1997.
[41] 王聖丰, "梳狀結構長週期光纖光柵於應變及磁場感測之應用, 國立高雄應用科技大學機械系博士論文," 2016.
[42] A. Yariv and P. Yeh, Optical waves in crystals (Wiley New York, 1984), Vol. 5.
[43] C.-Y. Lin, L. A. Wang, and G.-W. Chern, "Corrugated long-period fiber gratings as strain, torsion, and bending sensors," Journal of Lightwave Technology 19, 1159 (2001).
[44] R. Kashyap, Fiber bragg gratings (Academic press, 2009).
[45] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," Journal of lightwave technology 14, 58-65 (1996).

電子全文 電子全文(網際網路公開日期:20240730)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top