跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/30 19:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃冠瑋
研究生(外文):HUANG, GUAN-WEI
論文名稱:基於異向性磁阻感測器陣列之磁場源電流映像系統研究
論文名稱(外文):Magnetic Field Source Mapping System Based on Multi-Channel Anisotropic Magnetoresistance Sensor Array
指導教授:鄭振宗鄭振宗引用關係
指導教授(外文):JENG, JEN-TZONG
口試委員:呂志誠陳錦泰
口試委員(外文):LU, CHIH-CHENGCHEN, CHIN-TAI
口試日期:2019-07-26
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:55
中文關鍵詞:異向性磁阻感測器磁場掃描感測器陣列磁源反運算問題
外文關鍵詞:Anisotropy Magneto-ResistanceMagnetic field mappingSensor arrayInverse problem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要研究改良的磁場掃描方法以及二維電流分佈的反運算問題,系統架構主要以16通道AMR(異向性磁阻)感測器陣列為核心,藉由Arduino Nano進行資料的傳輸,待測電路板透過二維平移台移動,使感測器陣列能以固定次數進行有效率的磁場掃描。為探討空間解析度,設計了不同的電流路徑的電路板作為樣品。掃描系統及反運算問題求解皆是利用LabVIEW軟體編寫完成;用於計算電流密度分佈的演算法,是採用二維傅立葉轉換方法(Fourier transform)並使用漢寧濾波器(Hanning filter)。實驗結果表明,在感測器高度為2 mm時,對於平行電流分佈的空間解析度約為2 mm。此系統有望用於非破壞性的檢測,比如具磁性的金屬異物檢測,或是對於移動裝置的磁場擾動掃描,還有印刷電路板上的電路檢測。
This study focused on the improved magnetic field scanning method and the inverse problem of two-dimensional current distribution. A 16-channel AMR (Anisotropy Magneto-Resistance) sensor array was implemented and used for magnetic field mapping. To investigate the achievable spatial resolution, printed circuit boards of different current paths were designed as samples according to the parameters. The circuit board was mounted on a two-dimensional translation stage so that the sensor array can scan the magnetic field at a fixed number of times. The scanning system and the inverse problem were all written using LabVIEW software. The algorithm used to calculate the current density distribution was the two-dimensional Fourier transform method with a Hanning filter. The experimental results showed that the spatial resolution of the current distribution is 2 mm when the sensor array height is 2 mm. This system is expected to be useful for high-efficiency non-destructive testing, such as magnetic metal foreign object detection, magnetic field disturbance scanning for mobile devices and circuit detection on printed circuit boards.
中文摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vi
第一章 緒論 1
1.1研究背景 1
1.2研究目的 2
1.3文獻回顧 3
第二章 實驗原理 5
2.1磁源反運算演算法 5
2.1.1傅立葉轉換(Fourier transform) 5
2.2三軸地磁感測器介紹 10
2.2.1異向性磁阻效應 10
2.2.2三軸異向性磁阻感測器特性 11
2.2.3多通道AMR感測器陣列 12
第三章 系統架構及實驗方法 13
3.1系統架構 13
3.1.1雙軸XY平移台 14
3.1.2控制單晶片Arduino Nano 15
3.1.3 I²C通訊介面 16
3.2程式架構 17
3.3實驗方法 20
3.3.1標準樣品電流路徑設計 20
3.3.2標準樣品高度校準實驗 21
3.3.3同向電流路徑掃描實驗 23
3.3.4反向電流路徑掃描實驗 25
第四章 實驗結果與討論 26
4.1高度校準之擬合曲線 26
4.2 不同內插方法的結果 30
4.3 電流路徑實驗結果分析與比較 32
4.3.1 同向電流路徑的電流密度分佈結果 32
4.3.2 反向電流路徑的電流密度分佈結果 38
4.4 感測器陣列的最佳空間解析度 44
第五章 結論 49
5.1 結論 49
5.2 未來展望 50
參考文獻 51
附錄 掃描程式人機介面圖 53
[1] B. J. Roth, N. G. Sepulveda, J. P. Wikswo Jr., “Using a magnetometer to image a two‐dimensional current distribution,” J. Appl. Phys., vol. 65, pp.361-372, 1989.
[2] 廖問初,巨磁阻磁力計於磁源反算問題分析,碩士論文,國立臺北科技大學製造科技研究所,臺北,2006.
[3] Leyva-Cruz, J. A., Ferreira, E. S., Miltão, M. S. R., Andrade-Neto, A. V., Alves, A. S., Estrada, J. C., & Cano, M. E., "Reconstruction of magnetic source images using the Wiener filter and a multichannel magnetic imaging system." Review of Scientific Instruments 85.7: 074701, 2014.
[4] J. Pascal, D. Vogel, S. Knecht, M. Vescovo, L. Hébrard, “Three-dimensional Magnetic Camera for the Characterization of Magnetic Manipulation Instrumentation Systems for Electrophysiology Procedures”, EMBEC & NBC, pp 410-413, 2017.
[5] S. Chatraphorn, E. F. Fleet, and F. C. Wellstood, “Relationship between spatial resolution and noise in scanning superconducting quantum interference device microscopy,” J. Appl. Phys., vol. 92, pp. 4731-4740, 2002.
[6] David K. Cheng, Field and Wave Electromagnetics, 2nd edition, Addison-Wesley, 1989.
[7] F. C. Wellstood, J. Matthews and S. Chatraphorn, "Ultimate limits to magnetic imaging," IEEE Trans. Appl. Supercond., vol. 13, no. 2, pp. 258-260, 2003.
[8] IST8308 AMR sensor, iSentek Inc. (accessed Dec. 26, 2017), http://www.isentek.com/zhtw/index.php
[9] L. A. Knauss, A. Orozco and S. I. Woods, "Advances in magnetic-based current imaging for high resistance defects and sub-micron resolution," Proceedings of the 11th International Symposium on the Physical and Failure Analysis of Integrated Circuits. IPFA 2004 (IEEE Cat. No.04TH8743), 2004, pp. 267-270.
[10] P. Pesikan, M. L. G. Joy, G. C. Scott and R. M. Henkelman, "Two-dimensional current density imaging," in IEEE Transactions on Instrumentation and Measurement, vol. 39, no. 6, pp. 1048-1053, 1990.
[11] D. Baumgarten, M. Liehr, F.Wiekhorst, U. Steinhoff, P. Münster, P. Miethe and J. Haueisen, “Magnetic nanoparticle imaging by means of minimum norm estimates from remanence measurements”, Medical & biological engineering & computing, 46(12), 1177, 2008.
[12] Hölzl, P. A., & Zagar, B. G. “Deconvolution of high-resolution magnetic field scans for improved current density imaging”, IEEE Trans. Magn., 50(2), 101-104, 2014.
[13] J. E. Green, D. A. Stone, M. P. Foster and A. Tennant, “Spatially resolved measurements of magnetic fields applied to current distribution problems in batteries” IEEE Transactions on Instrumentation and Measurement, 64(4), 951-958, 2015.
[14] PCB Via Calculator, http://circuitcalculator.com/wordpress/2006/03/12/pcb-via-calculator/ PCB Via Calculator (accessed 2019.07.15)

電子全文 電子全文(網際網路公開日期:20240821)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top