跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 20:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳凱齊
研究生(外文):CHEN, KAI-CHI
論文名稱:農業廢棄物結合工業油泥製成廢棄物衍生燃料
論文名稱(外文):Refuse Derived Fuel from Agricultural wastes and Oil Sludge
指導教授:周志儒周志儒引用關係
指導教授(外文):JOU, CHIH-JU
口試委員:王鴻博周志儒蔡政賢蔡宗岳
口試委員(外文):WANG, HUNG-POJOU, CHIH-JUTSAI, CHENG-HSIENTSAI, TSUNG-YUEH
口試日期:2019-06-25
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:58
中文關鍵詞:油泥廢棄菇包廢棄物衍生燃料
外文關鍵詞:Oil SludgeSpent Mushroom BagRefuse Derived Fuel
相關次數:
  • 被引用被引用:1
  • 點閱點閱:389
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
煉油工業在生產及儲存過程中會產生許多含油汙泥,其含高量碳氫化合物,適合回收及再利用成為可用資源。油泥雖含有高熱值可作為生質燃料的價值,但易燃性低,本研究添加燃燒特性良好之廢棄菇包基質,摻配不同比例評估製成廢棄物衍生燃料(Refuse Derived Fuel, RDF)之可行性。油泥及廢棄菇包基質摻混比例(重量比,g/g)分別為8:2 (O8:M2)、7:3(O7:M3)、6:4(O6:M4)、5:5 (O5:M5 ),結果顯示隨著油泥摻配廢棄菇包基質比例的增加,RDF產物可燃分(87.43、87.37、86.78及86.75%)及熱值(9,176、8,452、7,871及7,279 cal/g)則是下降。另一方面,燃燒特性分析結果顯示依廢棄菇包基質比例提高而有所提升,綜合燃燒特性O5:M5 > O6:M4 > O7:M3 > O8:M2。綜合評估分析結果,油泥與廢棄菇包基質比例O6:M4為最佳之比例 (水分8.78%、灰分4.44%、可燃分86.78%、熱值7,871 cal/g),除可做為替代目前部分石化燃料之能源使用外,還可協助處理農業事業廢棄物,符合再生資源的有效利用,達到循環經濟的目標。
The petroleum industry produces a lot of oil sludge during production process and storage, which contains amounts of hydrocarbons, is suitable for recycling and reuse as an available resource. Though the oil sludge contains high heating value, it is difficult to be ignited. In this study, waste mushroom bag with good combustion characteristics is added, and blended in different proportions to evaluate the feasibility of making refuse derived fuel (RDF). The blending ratio (weight ratio, g/g) is 8:2 (O8:M2), 7:3 (O7:M3), 6:4 (O6:M4), 5:5 (O5:M5). The results show that the combustibility(87.43, 87.37, 86.78, 86.75%) and heating value(9,176, 8,452, 7,871, 7,279 cal/g) of RDF decrease while the ratio of mushroom bag has increased. On the other hand, the results of the combustion characteristics analysis increase when the ratio of mushroom bag has increased, the comprehensive combustion characteristics are O5:M5 > O6:M4 > O7:M3 > O8:M2. According to the comprehensive evaluation and analysis results, the best ratio of oil sludge and waste mushroom bag is O6:M4(water 8.78%, ash 4.44%, combustibility 86.78%, heating value 7,871 cal/g), it can not only replace some fossil fuels as an energy source, but also assist in the treatment of agricultural waste, in line with the effective use of renewable resources, and achieves the goal of circular economy.
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表 目 錄 vii
圖 目 錄 viii
一、 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 2
二、 文獻回顧 3
2.1 油泥 3
2.1.1 石化工業油泥的產量 3
2.1.2 油泥的形成 3
2.1.3 油泥的組成 4
2.1.4 油泥中重金屬含量 5
2.1.5 油泥的毒性與有害事業廢棄物認定標準 6
2.1.6 油泥的處理技術 8
2.2 廢棄菇包 11
2.2.1 台灣菇類產業 11
2.2.2 菇類栽培 12
2.2.3 廢棄菇包衍生之問題 13
2.2.4 廢棄菇包處理技術 14
2.3 廢棄物衍生燃料(Refuse Derived Fuel, RDF) 15
2.3.1 生質能 17
2.3.2 廢棄物衍生燃料 18
2.3.3 原料與成品特性 19
三、 實驗設備及方法 21
3.1 實驗材料 21
3.2 實驗設備 22
3.3 實驗流程 23
3.4 實驗方法 25
3.4.1 前處理 25
3.4.2 基本性質分析 25
3.4.3 配比設計 27
3.4.4 產物分析 27
四、 結果與討論 32
4.1 材料基本性質分析 32
4.1.1 三成分分析 32
4.1.2 熱值分析 32
4.1.3 單位容積重 33
4.2 配比設計 34
4.3 產物分析 35
4.3.1 三成分分析 35
4.3.2 熱值分析 35
4.3.3 單位容積重 36
4.3.4 能源緻密度(Energy densification ratio) 37
4.3.5 產物緻密度(Volumetric density) 37
4.3.6 單位體積發熱量變化(Volumetric energy density) 38
4.3.7 產物產率(Mass yield) 39
4.3.8 能源產率(Energy yield) 39
4.3.9 燃燒特性分析 40
4.3.10 事業廢棄物毒性特性溶出程序分析 47
4.4 綜合評估 49
五、 結論與建議 51
5.1 結論 51
5.2 建議 51
參考文獻 53

A. Y. El Naggar, E. A. S., A. T. Kandil, H. O. Elmoher. (2010). Petroleum cuts as solvent extractor for oil recovery from petroleum sludge. PETROLEUM TECHNOLOGY AND ALTERNATIVE FUELS, 1(1), 10.
Abdel Azim, A.-A. A., Abdul-Raheim, A.-R. M., Kamel, R. K., & Abdel-Raouf, M. E. (2011). Demulsifier systems applied to breakdown petroleum sludge. Journal of Petroleum Science and Engineering, 78(2), 364-370. doi:10.1016/j.petrol.2011.07.008
Al-Futaisi, A., Jamrah, A., Yaghi, B., & Taha, R. (2007). Assessment of alternative management techniques of tank bottom petroleum sludge in Oman. J Hazard Mater, 141(3), 557-564. doi:10.1016/j.jhazmat.2006.07.023
Al-Hamamre, Z., Saidan, M., Hararah, M., Rawajfeh, K., Alkhasawneh, H. E., & Al-Shannag, M. (2017). Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renewable and Sustainable Energy Reviews, 67, 295-314. doi:10.1016/j.rser.2016.09.035
Amon, T., Amon, B., Kryvoruchko, V., Machmuller, A., Hopfner-Sixt, K., Bodiroza, V., . . . Zollitsch, W. (2007). Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour Technol, 98(17), 3204-3212. doi:10.1016/j.biortech.2006.07.007
API. (2010). Category Assessment Document for Reclaimed Petroleum Hydrocarbons: Residual Hydrocarbon Wastes from Petroleum Refining. U.S. EPA HPV Challenge Program. Washington DC.
B.C.Williams, J.T.McMullan, & S.McCahey. (2001). An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresource Technology, 79(3), 4.
Cambiella, A., Benito, J. M., Pazos, C., & Coca, J. (2006). Centrifugal Separation Efficiency in the Treatment of Waste Emulsified Oils. Chemical Engineering Research and Design, 84(1), 69-76. doi:10.1205/cherd.05130
Chen, Y.-H., Chang, C.-C., Chang, C.-Y., Yuan, M.-H., Ji, D.-R., Shie, J.-L., . . . Ko, C.-H. (2017). Production of a solid bio-fuel from waste bamboo chopsticks by torrefaction for cofiring with coal. Journal of Analytical and Applied Pyrolysis, 126, 315-322. doi:10.1016/j.jaap.2017.05.015
Cong, K., Han, F., Zhang, Y., & Li, Q. (2019). The investigation of co-combustion characteristics of tobacco stalk and low rank coal using a macro-TGA. Fuel, 237, 126-132. doi:10.1016/j.fuel.2018.09.149
da Rocha, O. R. S., Dantas, R. F., Duarte, M. M. M. B., Duarte, M. M. L., & da Silva, V. L. (2010). Oil sludge treatment by photocatalysis applying black and white light. Chemical Engineering Journal, 157(1), 80-85. doi:10.1016/j.cej.2009.10.050
da Silva, L. J., Alves, F. C., & de Franca, F. P. (2012). A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste Manag Res, 30(10), 1016-1030. doi:10.1177/0734242X12448517
Duan, M., Li, C., Wang, X., Fang, S., Xiong, Y., & Shi, P. (2019). Solid separation from the heavy oil sludge produced from Liaohe Oilfield. Journal of Petroleum Science and Engineering, 172, 1112-1119. doi:10.1016/j.petrol.2018.09.019
Essam A. H. Zubaidy, D. M. A. (2010). Fuel recovery from waste oily sludge using solvent extraction. Process Safety and Environmental Protection, 88(5), 318-326. doi:10.1016/j.psep.2010.04.001
Hou, S.-S., Chen, M.-C., & Lin, T.-H. (2014). Experimental study of the combustion characteristics of densified refuse derived fuel (RDF-5) produced from oil sludge. Fuel, 116, 7. doi:10.1016/j.fuel.2013.08.001
Hu, G., Li, J., & Zeng, G. (2013). Recent development in the treatment of oily sludge from petroleum industry: a review. J Hazard Mater, 261, 470-490. doi:10.1016/j.jhazmat.2013.07.069
Jiang, H., Cheng, Z., Zhao, T., Liu, M., Zhang, M., Li, J., . . . Li, J. (2014). Pyrolysis kinetics of spent lark mushroom substrate and characterization of bio-oil obtained from the substrate. Energy Conversion and Management, 88, 259-266. doi:10.1016/j.enconman.2014.08.006
Jindaporn Jamradloedluk, C. L. (2015). Properties of Densified-refuse Derived Fuel Using Glycerin as a Binder. Procedia Engineering, 100, 6. doi:10.1016/j.proeng.2015.01.397
Jordan, S. N., Mullen, G. J., & Murphy, M. C. (2008). Composition variability of spent mushroom compost in Ireland. Bioresource Technology, 99(2), 411-418. doi:https://doi.org/10.1016/j.biortech.2006.12.012
Kriipsalu, M., Marques, M., & Maastik, A. (2008). Characterization of oily sludge from a wastewater treatment plant flocculation-flotation unit in a petroleum refinery and its treatment implications. Journal of Material Cycles and Waste Management, 10(1), 79-86. doi:10.1007/s10163-007-0188-7
Kumar, B., & B., D. R. M. (2013). Petroleum Oily Sludge and The Prospects of Microwave for Its
Remediation. International Journal of Engineering Research & Technology, 2(11), 12.
Kwak, W. S., Jung, S. H., & Kim, Y. I. (2008). Broiler litter supplementation improves storage and feed-nutritional value of sawdust-based spent mushroom substrate. Bioresour Technol, 99(8), 2947-2955. doi:10.1016/j.biortech.2007.06.021
Li, X., Miao, W., Lv, Y., Wang, Y., Gao, C., & Jiang, D. (2018). TGA-FTIR investigation on the co-combustion characteristics of heavy oil fly ash and municipal sewage sludge. Thermochimica Acta, 666, 1-9. doi:10.1016/j.tca.2018.05.023
Lin, Y., Ma, X., Ning, X., & Yu, Z. (2015). TGA–FTIR analysis of co-combustion characteristics of paper sludge and oil-palm solid wastes. Energy Conversion and Management, 89, 727-734. doi:https://doi.org/10.1016/j.enconman.2014.10.042
Liu, J., Jiang, X., Zhou, L., Wang, H., & Han, X. (2009). Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler. J Hazard Mater, 167(1-3), 817-823. doi:10.1016/j.jhazmat.2009.01.061
Long, X., Zhang, G., Shen, C., Sun, G., Wang, R., Yin, L., & Meng, Q. (2013). Application of rhamnolipid as a novel biodemulsifier for destabilizing waste crude oil. Bioresour Technol, 131, 1-5. doi:10.1016/j.biortech.2012.12.128
Lu, J.-J., & Chen, W.-H. (2015). Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy, 160, 49-57. doi:https://doi.org/10.1016/j.apenergy.2015.09.026
McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83(1), 10.
Mirghaffari, N. (2017). Treatment and recycling of oily sludges produced in the petroleum industry. Paper presented at the International Conference on Environmental Impacts of the Oil and Gas Industries: Kurdistan Region of Iraq as a Case Study (EIOGI), Koya-Erbil, Iraq.
Moreno, A. I., Font, R., & Conesa, J. A. (2017). Combustion of furniture wood waste and solid wood: Kinetic study and evolution of pollutants. Fuel, 192, 169-177. doi:https://doi.org/10.1016/j.fuel.2016.12.022
Mozafari, Motahareh, Nasri, & Zarrin. (2017). Operational conditions effects on Iranian heavy oil upgrading using microwave irradiation. Journal of Petroleum Science and Engineering, 151, 40-48. doi:10.1016/j.petrol.2017.01.028
Mrayyan, B., & Battikhi, M. N. (2005). Biodegradation of total organic carbons (TOC) in Jordanian petroleum sludge. J Hazard Mater, 120(1-3), 127-134. doi:10.1016/j.jhazmat.2004.12.033
Nabavinia, M., Soleimani, M., & Kargari, A. (2012). Vanadium Recovery from Oil Refinery Sludge Using Emulsion Liquid Membrane Technique. International Journal of Chemical and Environmental Engineering, 3(3), 4.
Park, K. J., Ahn, B. J., & Shin, H. C. (2008). A Study on Producing Refuse Derived Fuel (RDF) Using Waste Plastic Film and Sewage Sludge: - The usability of Raw Materials for RDF. Engineering in Agriculture, Environment and Food, 1(2), 57-62. doi:https://doi.org/10.1016/S1881-8366(08)80003-1
Propst, T. L., Lochmiller, R. L., Qualls, C. W., & Mcbee, K. (1999). In situ (mesocosm) assessment of immunotoxicity risk to small mammals inhabiting petrochemical waste sites. Chemosphere, 38, 19.
Ramaswamy, B., Kar, D. D., & De, S. (2007). A study on recovery of oil from sludge containing oil using froth flotation. J Environ Manage, 85(1), 150-154. doi:10.1016/j.jenvman.2006.08.009
Ramirez, D., Kowalczyk, R. M., & Collins, C. D. (2019). Characterisation of oil sludges from different sources before treatment: High-field nuclear magnetic resonance (NMR) in the determination of oil and water content. Journal of Petroleum Science and Engineering, 174, 729-737. doi:10.1016/j.petrol.2018.11.078
Reddy, M. V., Devi, M. P., Chandrasekhar, K., Goud, R. K., & Mohan, S. V. (2011). Aerobic remediation of petroleum sludge through soil supplementation: microbial community analysis. J Hazard Mater, 197, 80-87. doi:10.1016/j.jhazmat.2011.09.061
Saeed M. Al-Zahrani, M. D. P. (2013). Used lubricating oil regeneration by various solvent extraction techniques. Journal of Industrial and Engineering Chemistry, 19(2), 536-539. doi:10.1016/j.jiec.2012.09.007
Shang, H., Snape, C. E., Kingman, S. W., & Robinson, J. P. (2006). Microwave treatment of oil-contaminated North Sea drill cuttings in a high power multimode cavity. Separation and Purification Technology, 49(1), 84-90. doi:10.1016/j.seppur.2005.08.012
Shen, D. K., Gu, S., Luo, K. H., Bridgwater, A. V., & Fang, M. X. (2009). Kinetic study on thermal decomposition of woods in oxidative environment. Fuel, 88(6), 1024-1030. doi:https://doi.org/10.1016/j.fuel.2008.10.034
Skreiberg, A., Skreiberg, Ø., Sandquist, J., & Sørum, L. (2011). TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel, 90(6), 2182-2197. doi:https://doi.org/10.1016/j.fuel.2011.02.012
Su, W., Ma, H., Wang, Q., Li, J., & Ma, J. (2013). Thermal behavior and gaseous emission analysis during co-combustion of ethanol fermentation residue from food waste and coal using TG–FTIR. Journal of Analytical and Applied Pyrolysis, 99, 79-84. doi:10.1016/j.jaap.2012.10.023
Tavassoli, T., Mousavi, S. M., Shojaosadati, S. A., & Salehizadeh, H. (2012). Asphaltene biodegradation using microorganisms isolated from oil samples. Fuel, 93, 142-148. doi:10.1016/j.fuel.2011.10.021
Wang, T., Hou, H., Ye, Y., Rong, H., Lia, J., & Xue, Y. (2019). Combustion behavior of refuse-derived fuel produced from sewage sludge and rice husk/wood sawdust using thermogravimetric and mass spectrometric analyses. Journal of Cleaner Production, 222, 11. doi:10.1016/j.jclepro.2019.03.016
Xia, L., Lu, S., & Cao, G. (2003). Demulsification of Emulsions Exploited by Enhanced Oil Recovery System. Separation Science and Technology, 38(16), 4079-4094. doi:10.1081/SS-120024720
Yuan, R., Yu, S., & Shen, Y. (2019). Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues. Waste Management, 87, 86-96. doi:https://doi.org/10.1016/j.wasman.2019.02.009
Zhou, L., Jiang, X., & Liu, J. (2009). Characteristics of oily sludge combustion in circulating fluidized beds. J Hazard Mater, 170(1), 175-179. doi:10.1016/j.jhazmat.2009.04.109
行政院農業委員會. 段木菇類栽培管理技術. Retrieved from https://kmweb.coa.gov.tw/subject/ct.asp?xItem=901405&ctNode=8770&mp=368&kpi=0&hashid=
行政院農業委員會. 菇類木屑太空包之製作. Retrieved from https://kmweb.coa.gov.tw/subject/ct.asp?xItem=901392&ctNode=8769&mp=368&kpi=0&hashid=
行政院農業委員會. 農業統計資料查詢. Retrieved from http://agrstat.coa.gov.tw/sdweb/public/common/Download.aspx
宋細福, 呂昀陞, & 石信德. (2017). 台灣香菇栽培史(上). 技術服務季刊, 109, 4.
李曉梅. (2009). 國內市售菇類重金屬含量之調查. (碩士論文), 國立臺灣海洋大學,
林明諺. (2018). 以微波誘導去除煉油工業油泥有害物質之研究. (碩士論文), 國立高雄科技大學,
林凱隆, 邱應志, 張章堂, & 鄔家琪 (Writers). (2001). 木屑與香菇太空廢包堆肥化可行性評估. In 第三屆台灣環境資源永續發展研討會. 桃園.
林曉洪. (2008). 廢棄香菇太空包應用於固態生質燃料之製造. 中華林學季刊, 41(1), 15.
邱熒珊. (2008). 添加廢棄靈芝太空包於含鄰苯二甲酸酯類土壤生物復育之探討. (碩士), 東吳大學,
能源產業技術白皮書. (2016). 國家發展委員會.
陳宗明, 呂昀陞, & 石信德. (2016). 台灣菇類產業生產現況, 13-27.
陳美杏, 呂昀陞, & 石信德. (2010). 新興菇類的栽培與發展. 科學發展, 446.
黃元宏. (2013). 改質廢棄物衍生燃料之人造煤特性研究. (碩士), 國立臺北科技大學,
萬皓鵬. (2014). 生質物–後化石世代的重要能源與工業原料. 科學發展, 497, 8.
鄭維仁. (2012). 探討不同木屑萃出物培養牛樟芝菌種生長特性及活性分析. (碩士論文), 南台科技大學,
謝哲隆. (2001). 油污泥熱處理資源化研究. (博士論文), 國立臺灣大學,
魏稜. (2013). 決定香菇太空包逆向供應鏈之汙染費與補貼. (碩士論文), 國立中央大學,


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊