1. 行政院新聞傳播處. 積極推動循環經濟 創造經濟與環保雙贏. 2018; Available from: https://www.ey.gov.tw/Page/9277F759E41CCD91/14bd8667-0aaf-4dbb-a555-bf6cbf1e7900.
2. 行政院新聞傳播處. 推動循環經濟—創造經濟與環保雙贏. 2018; Available from:https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/12c0a2b8-485d-49d7-ba9e-a9a10b82828e.
3. 環境資訊中心. 再生能源:生生不息的天然資源. Available from: https://e-info.org.tw/column/eccpda/2004/ec04031601.htm.
4. 工業技術研究院. 再生能源即時資訊平台. Available from: https://pro.re.org.tw/use2.aspx.
5. 行政院環保署. 高雄市巨大垃圾統計. 2018; Available from: https://stat.epa.gov.tw/.
6. 黃崇文, 校園庭園廢棄物堆肥化之研究. 嘉南藥理大學環境工程與科學系,碩士論文, 2014.7. 高雄市政府工務局. 設施數量統計. Available from: https://data.kcg.gov.tw/dataset/facilities-has-investigated.
8. 行政院環保署. 垃圾性質分析統計資料. 2018; Available from: https://stat.epa.gov.tw/.
9. 行政院環保署. 台灣巨大垃圾統計資料. 2018; Available from: https://stat.epa.gov.tw/.
10. Nhuchhen, D.R. and P. Abdul Salam, Estimation of higher heating value of biomass from proximate analysis: A new approach. Journal, 2012. 99: p. 55-63.
11. García, R., et al., Spanish biofuels heating value estimation. Part II: Proximate analysis data. Journal, 2014. 117: p. 1139-1147.
12. 谷家恆, 第一境象,國立高雄第一科技大學. 2004.
13. 荒野保護協會. 印度紫檀. Available from: https://sowhc.sow.org.tw/html/observation/plant/a01plant/a010505-in-du-zhu-tain/indu-zhu-tain.htm.
14. 認識植物. 印度紫檀. Available from: http://kplant.biodiv.tw/%E5%8D%B0%E5%BA%A6%E7%B4%AB%E6%AA%80/%E5%8D%B0%E5%BA%A6%E7%B4%AB%E6%AA%80.htm.
15. 國立高雄科技大學(第一校區). 校園平面圖. Available from: http://www.nkfust.edu.tw/files/11-1000-1771.php.
16. 中央研究院數位典藏資源網. 植物生態-黑板樹. Available from: http://digiarch.sinica.edu.tw/content/subject/resource_content.jsp?oid=16777262&queryType=qs&queryString=%E9%BB%91%E6%9D%BF%E6%A8%B9.
17. Konno, K., Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein. Journal, 2011. 72(13): p. 1510-1530.
18. Farrell, B.D., et al., Escalation of Plant Defense: Do Latex and Resin Canals Spur Plant Diversification? Journal, 1991. 138(4): p. 881-900.
19. Lewinsohn, T.M., The geographical distribution of plant latex. Journal, 1991.
20. 農傳媒. 【有毒植物】有毒植物對人和動物的影響. Available from: https://www.agriharvest.tw/theme_data.php?theme=article&sub_theme=article&id=955.
21. Kumar, S., et al., Plant latex capped colloidal silver nanoparticles: A potent anti-biofilm and fungicidal formulation. Journal, 2017. 230: p. 705-713.
22. Hagel, J.M., et al., Got milk? The secret life of laticifers. Journal, 2008. 13(12): p. 631-639.
23. Itenov, K., et al., Diurnal fluctuations of the alkaloid concentration in latex of poppy Papaver somniferum is due to day–night fluctuations of the latex water content. Journal, 1999. 52(7): p. 1229-1234.
24. Oppel, C.B., et al., Visualizing a Plant Defense and Insect Counterploy: Alkaloid Distribution in Lobelia Leaves Trenched by a Plusiine Caterpillar. Journal, 2009. 35(6): p. 625-634.
25. Sessa, R.A., et al., Metabolite Profiling of Sesquiterpene Lactones from Lactuca Species: MAJOR LATEX COMPONENTS ARE NOVEL OXALATE AND SULFATE CONJUGATES OF LACTUCIN AND ITS DERIVATIVES. Journal, 2000. 275(35): p. 26877-26884.
26. Seiber, J.N., et al., Cardenolides in the latex and leaves of seven Asclepias species and Calotropis procera. Journal, 1982. 21(9): p. 2343-2348.
27. Mooibroek, H. and K. Cornish, Alternative sources of natural rubber. Journal, 2000. 53(4): p. 355-365.
28. Snook, M.E., et al., Characterization and quantitation of hexadecyl, octadecyl, and eicosyl esters of p-coumaric acid in the vine and root latex of sweetpotato [Ipomoea batatas (L.) Lam.]. Journal, 1994. 42(11): p. 2589-2595.
29. Chambers, J.L.E., et al., Benefits of trenching behavior in the context of an inducible defense. Journal, 2007. 17(3): p. 125-130.
30. J.R.Kimmel and E. L.Smith, Crystalline papain I.Preparation,Specificity,and Activation. Journal, 1953.
31. Ramos, M.V., et al., The defensive role of latex in plants: detrimental effects on insects. Journal, 2010. 4(1): p. 57-67.
32. Lynn, K.R. and N.A. Clevette-Radford, Hevains: Serine-centred proteases from the latex of Hevea brasiliensis. Journal, 1986. 25(10): p. 2279-2282.
33. Patel, A.K., et al., Carnein, a Serine Protease from Noxious Plant Weed Ipomoea carnea (Morning Glory). Journal, 2007. 55(14): p. 5809-5818.
34. Kang, H., et al., Isolation of Stress-Related Genes of Rubber Particles and Latex in Fig Tree (Ficus carica) and their Expressions by Abiotic Stress or Plant Hormone Treatments. Journal, 2003. 44(4): p. 412-414.
35. Wititsuwannakul, D., et al., Polyphenol oxidases from latex of Hevea brasiliensis: purification and characterization. Journal, 2002. 61(2): p. 115-121.
36. Lynn, K.R. and N.A. Clevette-Radford, Lectins from latices of Euphorbia and Elaeophorbia species. Journal, 1986. 25(7): p. 1553-1557.
37. 沈煒翔, REN21發布2017年全球在能源現況報告. 國家能源發展策略規劃及決策支援能量建構計畫 工業技術研究院 綠能與環境研究所.
38. Xu, C., et al., 1.19 Biomass Energy. Journal, 2018: p. 770-794.
39. 經濟部. 再生能源發展條例. Available from: https://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=J0130032.
40. 經濟部能源局-再生能源資訊網. 再生能源2018年度全球概況報告. 2018; Available from: https://www.re.org.tw/knowledge/more.aspx?cid=0&id=1824.
41. 經濟部能源局. 能源統計年報-發電裝置容量及發電量結構. 2017; Available from:https://www.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=867.
42. 經濟部, 能源轉型白皮書. 2018.
43. 能源教育知識網. 生質能. Available from: http://www.enedu.org.tw/GreenEnergy/ge-4.php.
44. 萬皓鵬. 生質物–後化石世代的重要能源與工業原料. 2014; Available from: https://scitechvista.nat.gov.tw/c/sW2j.htm.
45. Yang, H., et al., Influence of mineral matter on pyrolysis of palm oil wastes. Journal, 2006. 146(4): p. 605-611.
46. Zhu, W., et al., Catalytic gasification of char from co-pyrolysis of coal and biomass. Journal, 2008. 89(9): p. 890-896.
47. Monroe, J.G., et al., Ecoevolutionary Dynamics of Carbon Cycling in the Anthropocene. Journal, 2018. 33(3): p. 213-225.
48. 行政院環保署, 世界趨勢-轉廢為能. 2018.
49. Násner, A.M.L., et al., Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus™ modelling: Thermodynamic and economic viability. Journal, 2017. 69: p. 187-201.
50. Copyright, 工業技術研究院. 2018.
51. 張家驥. 機械生物處理(Mechanical Biological Treatment, MBT). 2018; Available from: https://www.twbiomass.org.tw/News/ReadNews?SN=1049.
52. 周明憲, 都市下水污泥熱裂解行為之研究. 國立中央大學環境工程研究所,碩士論文, 2005.53. Efika, C.E., et al., Influence of heating rates on the products of high-temperature pyrolysis of waste wood pellets and biomass model compounds. Journal, 2018. 76: p. 497-506.
54. Safdari, M.-S., et al., Heating rate and temperature effects on pyrolysis products from live wildland fuels. Journal, 2019. 242: p. 295-304.
55. Roy, P. and G. Dias, Prospects for pyrolysis technologies in the bioenergy sector: A review. Journal, 2017. 77: p. 59-69.
56. Doyle, C.D., Kinetic analysis of thermogravimetric data. Journal, 1961. 5(15): p. 285-292.
57. Friedman, H.L., Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal, 1964. 6(1): p. 183-195.
58. Kissinger, H.E., Reaction Kinetics in Differential Thermal Analysis. Journal, 1957. 29(11): p. 1702-1706.
59. Freeman, E.S. and B. Carroll, The Application of Thermoanalytical Techniques to Reaction Kinetics: The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate. Journal, 1958. 62(4): p. 394-397.
60. Petrović, Z.S. and Z.Z. Zavargo, Reliability of methods for determination of kinetic parameters from thermogravimetry and DSC measurements. Journal, 1986. 32(4): p. 4353-4367.
61. Ozawa, T., A New Method of Analyzing Thermogravimetric Data. Journal, 1965. 38(11): p. 1881-1886.
62. Chin, B.L.F., et al., Kinetic studies of co-pyrolysis of rubber seed shell with high density polyethylene. Journal, 2014. 87: p. 746-753.
63. Çepelioğullar, Ö. and A.E. Pütün, Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis. Journal, 2013. 75: p. 263-270.
64. Zhou, L., et al., Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Journal, 2006. 87(11): p. 963-969.
65. Coats, A.W. and J.P. Redfern, Kinetic Parameters from Thermogravimetric Data. Journal, 1964. 201(4914): p. 68-69.
66. 陳俊宇, 稻稈與PET、PLA廢棄物共同熱裂解之可行性及動力學研究. 國立高雄第一科技大學環境與安全衛生工程所,博士論文, 2016.67. Telmo, C., et al., Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Journal, 2010. 101(11): p. 3808-3815.
68. Lopez-Velazquez, M.A., et al., Pyrolysis of orange waste: A thermo-kinetic study. Journal, 2013. 99: p. 170-177.
69. Kumar, M., et al., Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies. Journal, 2019. 279: p. 262-270.
70. 王韻婷, 塑膠廢棄物與生質物共同熱裂解之動力學研究. 國立高雄第一科技大學環境與安全衛生工程研究所,碩士論文, 2014.71. 鄭良彥, 廢棄木、竹免洗筷製作生質燃料之可行性研究. 國立高雄第一科技大學環境與安全衛生工程所,碩士論文, 2018.72. 經濟部能源局, 中華民國105年能源統計手冊. 2016.
73. Chen, D., et al., Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature. Journal, 2016. 218: p. 780-788.
74. Zhao, B., et al., Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Journal, 2018. 174: p. 977-987.