跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/02/11 20:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡耀徵
研究生(外文):TSAI,YAO-CHENG
論文名稱:含植物乳汁之庭園廢棄物對熱裂解動力學參數影響之研究
論文名稱(外文):The Effect of Latex Contained Plant on Kinetic Parameters of Pyrolyzing Yard Waste
指導教授:戴華山戴華山引用關係
指導教授(外文):TAI,HUA-SHAN
口試委員:盧幸成蕭友晉戴華山
口試委員(外文):LU,HSING-CHENGHSIAO,YU-CHINTAI,HUA-SHAN
口試日期:2019-06-27
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:101
中文關鍵詞:生質能源庭園廢棄物植物乳汁熱裂解動力學
外文關鍵詞:bioenergyyard wasteplant latexpyrolysis kinetics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
  庭園廢棄物「Yard Waste」為生質廢棄物中重要產源之一,係指植物因生態循環自然產生之殘骸,其中部分庭園廢棄物含植物乳汁,而植物乳汁目前僅於醫療研究有較多探討,在資源化再利用之相關研究甚少,因此若可找出其資源化再利用之價值,將能達到廢棄物再利用及減量之目的。本研究以不含乳汁樹種(印度紫檀)、含乳汁樹種(黑板樹)進行基本性質分析及配比設計後,依熱重分析結果,利用不同熱裂解動力學模式進行熱裂解動力學參數計算(活化能Ea、頻率因子A、反應級數n),並進行熱裂解試驗,以探討含植物乳汁庭園廢棄物對熱裂解動力學參數之影響及製作生質燃料之可行性。研究結果顯示,印度紫檀、黑板樹枯枝落葉水分及灰分低、可燃分高,熱值約4600 Kcal/Kg,具有製作生質燃料之潛力;以不同熱裂解動力學模式進行相關參數計算,研究結果發現,印度紫檀有較高之平均活化能(56.2 Kcal/mol),而黑板樹平均活化能較低(48.6 Kcal/mol),主要反應區間於235-396℃,並隨黑板樹添加比例增加,活化能及頻率因子皆有降低之趨勢,因此添加黑板樹能有效降低其活化能;熱裂解試驗結果顯示,產物熱值相較於實驗材料皆有所提升,且經熱裂解試驗後,碳含量提升幅度高。綜合上述結果發現,植物乳汁對庭園廢棄物熱裂解動力學參數可能具有影響力,且具有製成生質燃料之可行性,未來可利用不同含乳汁樹種驗證其對熱裂解動力學參數之影響。
  Yard waste is defined as the debris of plants naturally produced by ecological cycles, and is also one of the most important sources of waste biomass. Some of the yard waste contain plant latex, which draws more attention merely in medical research field, only a few research focus on the field of resource recycle. Consequently, the goal of waste recycling and reduction could be achieved when its recycle as well as reuse values were discovered. The specimens of this study included a latex-free tree species (Pterocarpus indicus Willd) and a tree species with latex (Alstonia scholaris). Samples were collected and analyzed with experimental parameters designed in advance. Kinetic parameters (activation energy, pre-exponential factor, and reaction order) were calculated by various pyrolysis kinetic models based on the results of thermogravimetric analysis. Pyrolysis experiments were conducted to investigate the effects of latex on pyrolysis kinetic parameters as well as the feasibility of producing biofuels. The experimental results revealed that both species contained low moisture and ash, and high combustible components with a calorific value of 4600 Kcal/Kg, indicating potential feasibility of producing biofuels. As for the results of calculating pyrolysis kinetic parameters with different models, the average activation energy of Pterocarpus indicus Willd (56.2 Kcal/mol) was higher than that of Alstonia scholaris (48.6 Kcal/mol). The primary reaction range was between 235℃ to 396℃, where it increased with the amount of Alstonia scholaris added. Meanwhile, the activation energy and pre-exponential factor decreased with the amount of Alstonia scholaris added. According to the results of pyrolysis experiments, the calorific value of the product increased compared to the raw material thereof, and the carbon contents as well. To sum up, it's possible that plant latex might affect its pyrolysis kinetic parameters, and it's also feasible to produce biofuels. Extended studies could be conducted to verify the effects with latex-free trees in the future.
摘要 I
ABSTRACT II
目錄 V
表目錄 VIII
圖目錄 X
第一章 緒論 1
1-1研究緣起 1
1-2研究目的 2
第二章 文獻回顧 3
2-1庭園廢棄物 3
2-1-1印度紫檀 4
2-1-2黑板樹 5
2-1-3植物乳汁 6
2-2生質能 9
2-2-1生質能源 9
2-2-2生質物 12
2-2-3生質能轉換技術 14
2-3熱裂解 16
2-3-1熱裂解定義及反應途徑 16
2-3-2熱裂解產物性質 18
2-4熱裂解動力學理論 19
2-4-1 Friedman法 22
2-4-2 積分法 24
第三章 實驗材料及方法 27
3-1 實驗架構 27
3-2 實驗材料 29
3-3 實驗設備 30
3-4 實驗流程與方法 33
3-4-1 前處理 33
3-4-2 基本性質分析 33
3-4-3 配比設計 36
3-4-4 熱重分析 37
3-4-5 熱裂解動力學 37
3-4-6 實驗型熱裂解設備 37
3-4-7 產物分析 38
第四章 結果與討論 41
4-1 實驗材料基本性質分析 41
4-1-1 近似分析 41
4-1-2 熱值分析 41
4-1-3 單位容積重 42
4-1-4 鉀含量分析 43
4-1-5 元素分析 43
4-2 熱重分析 44
4-3 熱裂解動力學 51
4-3-1 Friedman法動力學 51
4-3-2 積分法動力學 60
4-3-3 Friedman法與積分法動力學模式差異 68
4-4 熱裂解試驗之固態產物分析 70
4-4-1 配比設計對熱裂解試驗之影響 70
4-4-2 升溫速率對熱裂解試驗之影響 76
4-4-3 不同參數對熱裂解試驗之影響 85
4-4-4 產物元素分析 92
第五章 結論與建議 94
5-1 結論 94
5-2 建議 96
參考文獻 97

1. 行政院新聞傳播處. 積極推動循環經濟 創造經濟與環保雙贏. 2018; Available from: https://www.ey.gov.tw/Page/9277F759E41CCD91/14bd8667-0aaf-4dbb-a555-bf6cbf1e7900.
2. 行政院新聞傳播處. 推動循環經濟—創造經濟與環保雙贏. 2018; Available from:https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/12c0a2b8-485d-49d7-ba9e-a9a10b82828e.
3. 環境資訊中心. 再生能源:生生不息的天然資源. Available from: https://e-info.org.tw/column/eccpda/2004/ec04031601.htm.
4. 工業技術研究院. 再生能源即時資訊平台. Available from: https://pro.re.org.tw/use2.aspx.
5. 行政院環保署. 高雄市巨大垃圾統計. 2018; Available from: https://stat.epa.gov.tw/.
6. 黃崇文, 校園庭園廢棄物堆肥化之研究. 嘉南藥理大學環境工程與科學系,碩士論文, 2014.
7. 高雄市政府工務局. 設施數量統計. Available from: https://data.kcg.gov.tw/dataset/facilities-has-investigated.
8. 行政院環保署. 垃圾性質分析統計資料. 2018; Available from: https://stat.epa.gov.tw/.
9. 行政院環保署. 台灣巨大垃圾統計資料. 2018; Available from: https://stat.epa.gov.tw/.
10. Nhuchhen, D.R. and P. Abdul Salam, Estimation of higher heating value of biomass from proximate analysis: A new approach. Journal, 2012. 99: p. 55-63.
11. García, R., et al., Spanish biofuels heating value estimation. Part II: Proximate analysis data. Journal, 2014. 117: p. 1139-1147.
12. 谷家恆, 第一境象,國立高雄第一科技大學. 2004.
13. 荒野保護協會. 印度紫檀. Available from: https://sowhc.sow.org.tw/html/observation/plant/a01plant/a010505-in-du-zhu-tain/indu-zhu-tain.htm.
14. 認識植物. 印度紫檀. Available from: http://kplant.biodiv.tw/%E5%8D%B0%E5%BA%A6%E7%B4%AB%E6%AA%80/%E5%8D%B0%E5%BA%A6%E7%B4%AB%E6%AA%80.htm.
15. 國立高雄科技大學(第一校區). 校園平面圖. Available from: http://www.nkfust.edu.tw/files/11-1000-1771.php.
16. 中央研究院數位典藏資源網. 植物生態-黑板樹. Available from: http://digiarch.sinica.edu.tw/content/subject/resource_content.jsp?oid=16777262&queryType=qs&queryString=%E9%BB%91%E6%9D%BF%E6%A8%B9.
17. Konno, K., Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein. Journal, 2011. 72(13): p. 1510-1530.
18. Farrell, B.D., et al., Escalation of Plant Defense: Do Latex and Resin Canals Spur Plant Diversification? Journal, 1991. 138(4): p. 881-900.
19. Lewinsohn, T.M., The geographical distribution of plant latex. Journal, 1991.
20. 農傳媒. 【有毒植物】有毒植物對人和動物的影響. Available from: https://www.agriharvest.tw/theme_data.php?theme=article&sub_theme=article&id=955.
21. Kumar, S., et al., Plant latex capped colloidal silver nanoparticles: A potent anti-biofilm and fungicidal formulation. Journal, 2017. 230: p. 705-713.
22. Hagel, J.M., et al., Got milk? The secret life of laticifers. Journal, 2008. 13(12): p. 631-639.
23. Itenov, K., et al., Diurnal fluctuations of the alkaloid concentration in latex of poppy Papaver somniferum is due to day–night fluctuations of the latex water content. Journal, 1999. 52(7): p. 1229-1234.
24. Oppel, C.B., et al., Visualizing a Plant Defense and Insect Counterploy: Alkaloid Distribution in Lobelia Leaves Trenched by a Plusiine Caterpillar. Journal, 2009. 35(6): p. 625-634.
25. Sessa, R.A., et al., Metabolite Profiling of Sesquiterpene Lactones from Lactuca Species: MAJOR LATEX COMPONENTS ARE NOVEL OXALATE AND SULFATE CONJUGATES OF LACTUCIN AND ITS DERIVATIVES. Journal, 2000. 275(35): p. 26877-26884.
26. Seiber, J.N., et al., Cardenolides in the latex and leaves of seven Asclepias species and Calotropis procera. Journal, 1982. 21(9): p. 2343-2348.
27. Mooibroek, H. and K. Cornish, Alternative sources of natural rubber. Journal, 2000. 53(4): p. 355-365.
28. Snook, M.E., et al., Characterization and quantitation of hexadecyl, octadecyl, and eicosyl esters of p-coumaric acid in the vine and root latex of sweetpotato [Ipomoea batatas (L.) Lam.]. Journal, 1994. 42(11): p. 2589-2595.
29. Chambers, J.L.E., et al., Benefits of trenching behavior in the context of an inducible defense. Journal, 2007. 17(3): p. 125-130.
30. J.R.Kimmel and E. L.Smith, Crystalline papain I.Preparation,Specificity,and Activation. Journal, 1953.
31. Ramos, M.V., et al., The defensive role of latex in plants: detrimental effects on insects. Journal, 2010. 4(1): p. 57-67.
32. Lynn, K.R. and N.A. Clevette-Radford, Hevains: Serine-centred proteases from the latex of Hevea brasiliensis. Journal, 1986. 25(10): p. 2279-2282.
33. Patel, A.K., et al., Carnein, a Serine Protease from Noxious Plant Weed Ipomoea carnea (Morning Glory). Journal, 2007. 55(14): p. 5809-5818.
34. Kang, H., et al., Isolation of Stress-Related Genes of Rubber Particles and Latex in Fig Tree (Ficus carica) and their Expressions by Abiotic Stress or Plant Hormone Treatments. Journal, 2003. 44(4): p. 412-414.
35. Wititsuwannakul, D., et al., Polyphenol oxidases from latex of Hevea brasiliensis: purification and characterization. Journal, 2002. 61(2): p. 115-121.
36. Lynn, K.R. and N.A. Clevette-Radford, Lectins from latices of Euphorbia and Elaeophorbia species. Journal, 1986. 25(7): p. 1553-1557.
37. 沈煒翔, REN21發布2017年全球在能源現況報告. 國家能源發展策略規劃及決策支援能量建構計畫 工業技術研究院 綠能與環境研究所.
38. Xu, C., et al., 1.19 Biomass Energy. Journal, 2018: p. 770-794.
39. 經濟部. 再生能源發展條例. Available from: https://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=J0130032.
40. 經濟部能源局-再生能源資訊網. 再生能源2018年度全球概況報告. 2018; Available from: https://www.re.org.tw/knowledge/more.aspx?cid=0&id=1824.
41. 經濟部能源局. 能源統計年報-發電裝置容量及發電量結構. 2017; Available from:https://www.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=867.
42. 經濟部, 能源轉型白皮書. 2018.
43. 能源教育知識網. 生質能. Available from: http://www.enedu.org.tw/GreenEnergy/ge-4.php.
44. 萬皓鵬. 生質物–後化石世代的重要能源與工業原料. 2014; Available from: https://scitechvista.nat.gov.tw/c/sW2j.htm.
45. Yang, H., et al., Influence of mineral matter on pyrolysis of palm oil wastes. Journal, 2006. 146(4): p. 605-611.
46. Zhu, W., et al., Catalytic gasification of char from co-pyrolysis of coal and biomass. Journal, 2008. 89(9): p. 890-896.
47. Monroe, J.G., et al., Ecoevolutionary Dynamics of Carbon Cycling in the Anthropocene. Journal, 2018. 33(3): p. 213-225.
48. 行政院環保署, 世界趨勢-轉廢為能. 2018.
49. Násner, A.M.L., et al., Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus™ modelling: Thermodynamic and economic viability. Journal, 2017. 69: p. 187-201.
50. Copyright, 工業技術研究院. 2018.
51. 張家驥. 機械生物處理(Mechanical Biological Treatment, MBT). 2018; Available from: https://www.twbiomass.org.tw/News/ReadNews?SN=1049.
52. 周明憲, 都市下水污泥熱裂解行為之研究. 國立中央大學環境工程研究所,碩士論文, 2005.
53. Efika, C.E., et al., Influence of heating rates on the products of high-temperature pyrolysis of waste wood pellets and biomass model compounds. Journal, 2018. 76: p. 497-506.
54. Safdari, M.-S., et al., Heating rate and temperature effects on pyrolysis products from live wildland fuels. Journal, 2019. 242: p. 295-304.
55. Roy, P. and G. Dias, Prospects for pyrolysis technologies in the bioenergy sector: A review. Journal, 2017. 77: p. 59-69.
56. Doyle, C.D., Kinetic analysis of thermogravimetric data. Journal, 1961. 5(15): p. 285-292.
57. Friedman, H.L., Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal, 1964. 6(1): p. 183-195.
58. Kissinger, H.E., Reaction Kinetics in Differential Thermal Analysis. Journal, 1957. 29(11): p. 1702-1706.
59. Freeman, E.S. and B. Carroll, The Application of Thermoanalytical Techniques to Reaction Kinetics: The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate. Journal, 1958. 62(4): p. 394-397.
60. Petrović, Z.S. and Z.Z. Zavargo, Reliability of methods for determination of kinetic parameters from thermogravimetry and DSC measurements. Journal, 1986. 32(4): p. 4353-4367.
61. Ozawa, T., A New Method of Analyzing Thermogravimetric Data. Journal, 1965. 38(11): p. 1881-1886.
62. Chin, B.L.F., et al., Kinetic studies of co-pyrolysis of rubber seed shell with high density polyethylene. Journal, 2014. 87: p. 746-753.
63. Çepelioğullar, Ö. and A.E. Pütün, Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis. Journal, 2013. 75: p. 263-270.
64. Zhou, L., et al., Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Journal, 2006. 87(11): p. 963-969.
65. Coats, A.W. and J.P. Redfern, Kinetic Parameters from Thermogravimetric Data. Journal, 1964. 201(4914): p. 68-69.
66. 陳俊宇, 稻稈與PET、PLA廢棄物共同熱裂解之可行性及動力學研究. 國立高雄第一科技大學環境與安全衛生工程所,博士論文, 2016.
67. Telmo, C., et al., Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Journal, 2010. 101(11): p. 3808-3815.
68. Lopez-Velazquez, M.A., et al., Pyrolysis of orange waste: A thermo-kinetic study. Journal, 2013. 99: p. 170-177.
69. Kumar, M., et al., Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies. Journal, 2019. 279: p. 262-270.
70. 王韻婷, 塑膠廢棄物與生質物共同熱裂解之動力學研究. 國立高雄第一科技大學環境與安全衛生工程研究所,碩士論文, 2014.
71. 鄭良彥, 廢棄木、竹免洗筷製作生質燃料之可行性研究. 國立高雄第一科技大學環境與安全衛生工程所,碩士論文, 2018.
72. 經濟部能源局, 中華民國105年能源統計手冊. 2016.
73. Chen, D., et al., Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature. Journal, 2016. 218: p. 780-788.
74. Zhao, B., et al., Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Journal, 2018. 174: p. 977-987.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top