跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/11 06:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張智凱
研究生(外文):Chang, Chih-Kal
論文名稱:低壓脈衝電場處理對花生芽菜生長之影響
論文名稱(外文):Effect of low-voltage pulsed electric field treatment on the sprouting of peanuts
指導教授:吳明昌黃至君
指導教授(外文):Ming-Chang WuChih-Chun Jean Huang
口試委員:吳瑞碧王進崑謝昌衛
口試委員(外文):Swi-Bea WuChin-Kun WangChang-Wei Hsieh
口試日期:2019-07-10
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:70
中文關鍵詞:脈衝電場發芽率抗氧化試驗白藜蘆醇花生芽
外文關鍵詞:Pulsed electric fields (PEF)antioxidant testseed germination rateresveratrolpeanut sprout
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
花生富含營養價值,除高含油量、蛋白質外,亦含有類黃酮及白藜蘆醇等營養物質,且花生發芽過程中,不僅會影響蛋白質和油脂含量,還會提高總酚、類黃酮及白藜蘆醇等機能性成分,增加抗氧化活性,因此花生芽是極具有潛力的機能性食品。有文獻證明了脈衝電場(PEF)在食品工業中多種應用的可行性,例如殺菌、提升萃取率、種子發芽率和改善植物營養價值等,因此本實驗欲研究PEF的處理對花生發芽率、抗氧化物質含量與抗氧化活性的影響。實驗條件為不同PEF電壓0.1 (A組)、0.5 (B組)、1 kv/cm (C組)與5 kv/cm(D組)處理花生10分鐘,觀察其對發芽率與種皮表面之影響;另外以此條件每天處理花生芽並於不同生長天數(0、1、2、4、6或8天)檢測抗氧化物質(包括總酚、類黃酮與白藜蘆醇)含量與抗氧化活性(包括DPPH與ABTS清除率、螯合亞鐵能力與還原力)。結果顯示,PEF-B組處理種子24小時後發芽率達82%,相較於控制組的70%;27小時後B組發芽率則達95%,控制組為86%,證實此PEF處理條件可提高發芽率與縮短發芽時間。此外,整體的抗氧化結果顯示各組皆隨著生長天數有上升的趨勢,但以B組提升最多。最後以此條件開發花生芽油以及觀察儲藏期間的品質變化。結果顯示,與未處理的花生油相比,花生芽油有較高的總酚及白藜蘆醇含量,但同時酸價與過氧化價也較高。此結果將提供未來PEF處理法應用於開發新產品之參考。
The Contents of Abstract in This Thesis:
Peanut is rich in nutritive value. In addition to high contents of oil and protein, it also contains nutrients such as flavonoids and resveratrol. In the process of peanut germination, it dose not only affect contents of protein and oil but also increases the amounts of functional ingredients such as phenols, flavonoids and resveratrol and the antioxidant activities. Thus, peanut sprouts are highly promising functional foods. Some studies have demonstrated the feasibility of pulsed electric field (PEF) for multiple applications in the food industry such as sterilization, increasing extraction rate and seed germination rate and improving nutritional value. Therefore, this experiment intended to explore the effects of PEF treatment on peanut germination rate, antioxidant contents and antioxidant activities. The seed germination rate and the see coat surface observed by SEM was studied after applying different voltages of 0.1 (group A), 0.5 (group B) and 1 kv/cm (group C) for 10 minutes. Moreover, the contents of antioxidants (polyphenols, flavonoids and resveratrol) and the antioxidant activities (DPPH and ABTS free radical scavenging activity, ferrous ion chelating ability and reducing ability) in peanut sprouts treated every day under these PEF conditions were determined at the 0, 1st, 2nd, 4th, 6th, and 8th day. The results show that after 24 hours the germination rate of the PEF (Group B)-treated seeds is 82%, and that for the control group is 70%; After 27 hours, the germination rate of these treated seeds reaches 95%, compared to 86% in control group, confirming that this PEF treatment can increase the germination rate and shorten the germination time. Regarding the overall antioxidant results, all groups tend to increase during sprouting, among which Group B increases the most. Finally, this condition was used to develop a new product, peanut sprout oil, and the oil quality during storage time was also observed. The results show that, compared to the untreated peanut oil, the oil made from sprouted peanuts has higher contents of polyphenols and resveratrol but also has higher acid value and peroxide value. These results provide information for PEF treatment to be applied in the development of new products in the future.
目錄
中文摘要 III
Abstract IV
謝誌 VI
圖目錄 XI
表目錄 XI
第1章 前言 1
第2章 文獻回顧 3
2.1 脈衝電場(Pulsed electric field;PEF)簡介 3
2.1.1 PEF背景概述 3
2.1.2 PEF的作用原理 3
2.1.3 PEF的影響因子 8
2.1.4 PEF的相關研究成果 8
2.2植物之代謝及其產物 8
2.2.1植物代謝產物之分類 9
2.2.2初級代謝產物 (Primary metabolites) 9
2.2.3次級代謝產物 (Secondary metabolites) 9
2.2.4次級代謝產物之功能 9
2.2.5影響次級代謝產物之因子 10
2.3種子的萌芽階段 13
2.3.1種子休眠階段(Seed dormancy) 13
2.3.2種子萌芽(Germination)作用 13
2.4花生之簡介 14
2.4.1花生的營養價值 14
2.4.2花生油 14
2.5花生芽概述 19
2.6白藜蘆醇(Resveratrol) 19
第3章 材料與方法 22
3.1實驗目的 22
3.2實驗原料及材料 22
3.3實驗藥品 22
3.4實驗用儀器設備 23
3.5實驗架構 25
3.6實驗方法 26
3.6.1脈衝電場架設及實驗參數 26
3.6.2花生生長測試 26
3.6.2.1花生芽培育 26
3.6.2.2 SEM觀察花生表面 29
3.6.2.3萌芽率(%)測試 29
3.6.3花生芽營養成分分析 29
3.6.3.1花生芽培育 29
3.6.3.2花生芽乾燥 29
3.6.3.3花生甲醇萃取液製備 30
3.6.3.4抗氧化成分分析 30
3.6.3.4.1總多酚含量分析 30
3.6.3.4.2總類黃酮含量分析 30
3.6.3.4.3白藜蘆醇含量分析 30
3.6.3.5抗氧化能力分析 31
3.6.3.5.1 DPPH清除自由基能力 31
3.6.3.5.2 TEAC總抗氧化能力 31
3.6.3.5.3螯合亞鐵能力 32
3.6.3.5.4總還原能力 32
3.6.4花生芽粗脂肪含量 32
3.6.5花生芽油之開發以及儲藏 33
3.6.5.1 花生芽油前處理製備 33
3.6.5.2 花生芽油製備 33
3.6.5.3 花生芽油儲藏試驗 33
3.6.5.4 油脂成分分析 34
3.6.5.4.1 花生芽油總酚含量 34
3.6.5.4.2 花生芽油白藜蘆醇含量 34
3.6.5.5 油脂品質分析 34
3.6.5.5.1 花生芽油酸價測定 34
3.6.5.5.2 花生芽油過氧化價測定 35
3.6.5.5.3 花生芽油色澤分析 35
3.7數據統計分析 36
第4章 結果與討論 37
4.1 脈衝電場對花生芽生長影響 37
4.1.1以SEM觀察不同PEF條件對花生芽表面之影響 37
4.1.2不同PEF參數對花生芽萌芽之影響 37
4.2 脈衝電場對花生芽生長過程中之抗氧化成分與能力影響 41
4.2.1 抗氧化成分分析 41
4.2.1.1不同PEF條件對花生芽生長過程中(0,1,2,4,6,8天)
總多酚含量影響 41
4.2.1.2不同PEF條件對花生芽生長過程中(0,1,2,4,6,8天)
類黃酮含量影響 41
4.2.1.3 不同PEF條件對花生芽生長過程中(0,1,2,4,6,8天)
白藜蘆醇含量影響 41
4.2.2抗氧化能力分析 46
4.2.2.1不同PEF條件對花生芽生長過程中(0,1,2,4,6,8天)
DPPH能力影響 46
4.2.2.2不同PEF條件對花生芽生長過程中(0,1,2,4,6,8天)
ABTS能力影響 46
4.2.2.3不同PEF條件對花生芽生長過程中(0,1,2,4,6,8天)
螯合亞鐵能力影響 46
4.2.2.4不同PEF條件對花生芽生長過程中(0,1,2,4,6,8天)
總還原能力影響 47
4.3花生芽粗脂肪含量 52
4.4 花生芽油之開發以及儲藏 52
4.4.1儲藏過程中花生芽油抗氧化成分分析 52
4.4.1.1花生芽油總酚含量變化分析 52
4.4.1.2花生芽油白藜蘆醇含量變化分析 52
4.4.2儲藏過程中花生芽油品質分析 53
4.4.2.1花生芽油酸價變化分析 53
4.4.2.2花生芽油過氧化價變化分析 53
4.4.2.3花生芽油色澤變化分析 54
第5章 結論 65
第6章 參考文獻 66
作者簡介 70
王國璽(2003)機能性花生芽之製備探討。國立嘉義大學食品科學系
碩士論文。
林宏哲 (2018) 脈衝電場對花生發芽、生長及植化素生成之影響。國
立屏東科技大學食品科學系碩士論文。
侯鈞凱(2017)直接壓榨與乙醇萃取芝麻油之品質及脂解酶活性。國立
屏東科技大學食品科學系碩士論文。
黃承智(2017) 以乙醇萃取芝麻油之研究。國立屏東科技大學食品科學系碩士論文。
郭華仁 (2015) 種子學。台大出版中心。頁12-12 。
美國農業部營養數據庫(花生)
https://ndb.nal.usda.gov/ndb/foods/show/16091?n1=%7BQv%3D1%7D&fgcd=&man=&lfacet=&count=&max=25&sort=default&qlookup=Arachis+hypogaea&offset=&format=Abridged&new=&measureby=&ds=&Qv=1&qt=&qp=&qa=&qn=&q=&ing=
美國農業部營養數據庫(花生油)
https://ndb.nal.usda.gov/ndb/foods/show/04042?n1=%7BQv%3D1%7D&fgcd=&man=&lfacet=&count=&max=25&sort=default&qlookup=peanut+oil&offset=&format=Abridged&new=&measureby=&ds=&Qv=1&qt=&qp=&qa=&qn=&q=&ing=
綠藤生機https://www.greenvines.com.tw/fresh/greenvines_sprouts/
行政院農委會https://www.coa.gov.tw/ws.php?id=1012
行政院農委會-種子世界https://kmweb.coa.gov.tw/subject/ct.asp?xItem=243244&ctNode=5685&mp=310&kpi=0&hashid=
行政院農委會-植物對環境逆境之調控與應用
https://www.coa.gov.tw/ws.php?id=24091


Abdel-Aty, A. M., et al. (2019). "Impact of germination on antioxidant capacity of garden cress: New calculation for determination of total antioxidant activity." 246: 155-160.

Adedeji, A. A., et al. (2008). "Effect of pretreatments on drying characteristics of okra." 26(10): 1251-1256.

Adhikari, B., et al. (2018). "Resveratrol, total phenolic and flavonoid contents, and antioxidant potential of seeds and sprouts of Korean peanuts." 27(5): 1275-1284.

Akula, R., et al. (2011). "Influence of abiotic stress signals on secondary metabolites in plants." 6(11): 1720-1731.

Aronsson, K., et al. (2005). "Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing." 99(1): 19-32.

Barba, F. J., et al. (2015). "Current applications and new opportunities for the use of pulsed electric fields in food science and industry." 77: 773-798.

Bewley, J. D., et al. (2012). Seeds: physiology of development, germination and dormancy, Springer Science & Business Media.

Chen, G.-L., et al. (2018). "Antioxidant capacities and total phenolic contents of 30 flowers." 111: 430-445.

Chung, I.-M., et al. (2003). "Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants." 164(1): 103-109.

Cáceres, P. J., et al. (2014). "Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions." 152: 407-414.

Donsì, F., et al. (2010). "Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue." 2(2): 109-130.

Ghumman, A., et al. (2016). "Impact of germination on flour, protein and starch characteristics of lentil (Lens culinari) and horsegram (Macrotyloma uniflorum L.) lines." 65: 137-144.

Guderjan, M., et al. (2005). "Impact of pulsed electric field treatment on the recovery and quality of plant oils." 67(3): 281-287.

Huang, X.-t., et al. (2019). "Resveratrol: Review on its discovery, pharmacokinetics and anti-leukemia effects."

Janila, P., et al. (2016). "Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes." 242: 203-213.

Li, Y.-C., et al. (2014). "The effects of germination on chemical composition of peanut seed." 20(4): 883-889.

Liang, B., et al. (2006). "Effect of lanthanum on plants under supplementary ultraviolet-B radiation: effect of lanthanum on flavonoid contents in soybean seedlings exposed to supplementary ultraviolet-B radiation." 24(5): 613-616.

Limmongkon, A., et al. (2017). "Antioxidant activity, total phenolic, and resveratrol content in five cultivars of peanut sprouts." 7(4): 332-338.

Mareček, V., et al. (2017). "ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt." 73: 40-45.

McDonald, C., et al. (2000). "Effects of pulsed electric fields on microorganisms in orange juice using electric field strengths of 30 and 50 kV/cm." 65(6): 984-989.

Milani, E. A., et al. (2015). "Pulsed electric field continuous pasteurization of different types of beers." 50: 223-229.

Morales-de la Peña, M., et al. (2018). "Novel technologies to improve food safety and quality."

Parniakov, O., et al. (2015). "Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae Nannochloropsis." 8: 128-134.

Peña-Cortés, H., et al. (2004). "Involvement of jasmonic acid and derivatives in plant response to pathogen and insects and in fruit ripening." 23(3): 246-260.

Picart, L., et al. (2002). "Inactivation of Listeria innocua in dairy fluids by pulsed electric fields: influence of electric parameters and food composition." 3(4): 357-369.

Qin, B.-L., et al. (1998). "Inactivating microorganisms using a pulsed electric field continuous treatment system." 34(1): 43-50.

Rebersek, M., et al. (2014). "Cell membrane electroporation-Part 3: the equipment." 30(3): 8-18.

Shahidi, F., et al. (1997). "Endogenous antioxidants and stability of sesame oil as affected by processing and storage." 74(2): 143-148.

Sharma, P., et al. (2014). "Bacterial inactivation in whole milk using pulsed electric field processing." 35(1): 49-56.

Singh, S., et al. (2005). "Accumulation of metals and its effects in Brassica juncea (L.) Czern.(cv. Rohini) grown on various amendments of tannery waste." 62(1): 118-127.

Sitzmann, W., et al. (2016). "Applications of electricity and specifically pulsed electric fields in food processing: Historical backgrounds." 37: 302-311.

Sánchez-Vega, R., et al. (2015). "Influence of high-intensity pulsed electric field processing parameters on antioxidant compounds of broccoli juice." 29: 70-77.

Sridhar, K. and A. L. J. F. c. Charles (2019). "Statistical comparative study between the conventional DPPH• spectrophotometric and dropping DPPH• analytical method without spectrophotometer: Evaluation for the advancement of antioxidant activity analysis."

Taiz, L. and E. J. I. Zeiger, Sunderland (2002). "Plant physiology, 3rd edn. Sinaeur Associates."

Taiz, L. and E. J. P. p. Zeiger (2006). "Secondary metabolites and plant defense." 4: 315-344.

Tsong, T. Y. (1989). Electroporation of cell membranes. Electroporation and Electrofusion in Cell Biology, Springer: 149-163.

Vega-Mercado, H., et al. (1996). "Inactivation of Escherichia coli by combining pH, ionic strength and pulsed electric fields hurdles." 29(2): 117-121.

Wang, K.-H., et al. (2005). "Germination of Peanut Kernels to Enhance Resveratrol Biosynthesis and Prepare Sprouts as a Functional Vegetable." Journal of Agricultural and Food Chemistry 53(2): 242-246.

Xu, B. J. and S. J. J. o. f. s. Chang (2007). "A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents." 72(2): S159-S166.

Xu, L., et al. (2017). "Impact of germination on nutritional and physicochemical properties of adlay seed (Coixlachryma-jobi L.)." 229: 312-318.

Yen, G.-C., et al. (1995). "Antioxidant activity of various tea extracts in relation to their antimutagenicity." 43(1): 27-32.

Yu, M., et al. (2016). "Preparation of resveratrol-enriched and poor allergic protein peanut sprout from ultrasound treated peanut seeds." 28: 334-340.

Zhang, W., et al. (1997). "Effect of temperature and its shift on growth and anthocyanin production in suspension cultures of strawberry cells." 127(2): 207-214.

Zimmermann, U. (1986). Electrical breakdown, electropermeabilization and electrofusion. Reviews of Physiology, Biochemistry and Pharmacology, Volume 105, Springer: 175-256.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top