跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/27 05:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姜雨君
研究生(外文):Jiang, Yu-Jun
論文名稱:不同黴菌毒素組合及培養時段對孤雌激活豬胚發育能力之影響
論文名稱(外文):Effects of different mycotoxin combination and cultural stages on the development of parthenogenetic porcine embryos
指導教授:沈朋志沈朋志引用關係彭劭于楊國泰楊國泰引用關係
指導教授(外文):Shen, Perng-ChihPeng, Shao-YuYang, Kuo-Tai
口試委員:沈朋志彭劭于楊國泰陳立人王治華
口試委員(外文):Shen, Perng-ChihPeng, Shao-YuYang, Kuo-TaiChen, Lih-RenWang, Chih-Hua
口試日期:2019-07-19
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:動物科學與畜產系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:54
中文關鍵詞:胚發育率體外培養體外成熟培養黴菌毒素種類
外文關鍵詞:Development rate of embryosIn vitro cultureIn vitro maturationMycotoxin combinationPorcine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
家畜飼糧原料中之黴菌毒素(Mycotoxins)汙染將影響家畜之生長、繁殖性能及其他生理現象,且玉米赤黴烯酮(Zearalenone, ZEA)、嘔吐毒素(Deoxynivalenol, DON)及黃麴毒素(Aflatoxin B1, AFB1)確實廣泛存在於飼料原料中。然而豬採食遭黴菌毒素汙染飼料後對其生理影響之試驗雖已有研究,但迄今針對黴菌毒素在豬卵母細胞成熟(in vitro maturation, IVM)及胚體外培養(in vitro culture, IVC)階段之毒素效應尚未釐清,亦多以單一毒素進行探討。因此本研究以豬卵母細胞作為試驗材料,並將各種黴菌毒素之各別及組合濃度固定於1 μM,探討α-ZOL、DON、AFB1等3種毒素之各別培養及相互組合於IVM、IVC階段及IVC不同培養階段添加對豬卵母細胞孤雌激活後發育能力之影響。在IVM階段培養之結果顯示,α-ZOL、DON及AFB1組卵母細胞之成熟率(65.7、59.1 and 52.4%)及孤雌激活後之囊胚率(17.9、14.0 and 4.8%)均顯著(p < 0.05)低於不含黴菌毒素之陽性(成熟率:71.9%;囊胚率:40.5%)及陰性(0.1% DMSO組)(成熟率:70.1%;囊胚率:38.3%),且AFB1組卵母細胞之成熟率及囊胚率最低,且均顯著(p < 0.05)低於其他各組。在IVM階段不同黴菌毒素組合之試驗中也發現,當IVM培養液中添加AFB1時,其對卵母細胞之成熟率及囊胚率之負面影響最大。在IVC階段之培養結果顯示,α-ZOL組之囊胚率(8.0 %)顯著(p < 0.05)低於陽性(45.0%)及陰性(46.7%)對照組,而DON及AFB1組則均無囊胚發育(0.0%)。在IVC階段之不同黴菌毒素組合試驗中則顯示,Z+D+A組之囊胚率(23.3%)均顯著(p < 0.05)低於陽性(41.7%)陰性(45.8%)對照組,但Z+D+A組之囊胚率(23.3%)則顯著(p < 0.05)高於Z+D(7.5%)、D+A(6.7%)及A+Z(6.7%)組。在IVC階段中之不同培養階段之結果顯示,於開始培養之第1-2日添加之α-ZOL(Z-1+2組,23.0%)、 DON(D-1+2組,20.3%)及AFB1(A-1+2組,18.0%)組之囊胚率均顯著(p < 0.05)低於該胚在開始培養之第3-4日添加組(Z-3+4組:43.5%; D-3+4組:34.2%;A-3+4:33.8%)。在IVC階段中不同培養階段之不同黴菌毒素組合試驗中亦發現,不論黴菌毒素之組合為何,於開始培養第1-2日添加組(5.0-14.1)之囊胚率均顯著(p < 0.05)低於開始培養第3-4日添加組(19.6-27.2%)。綜合上述結果說明,不論於IVM或IVC階段,培養液中添加α-ZOL、DON及AFB1等黴菌毒素均降低豬卵母細胞及胚之發育能力,且尤以AFB1對胚之毒性效應最大,而在IVC階段於胚發育阻滯期前(開始培養第1-2日)之添加將更行降低囊胚率。
Mycotoxins in feeds result in lots of financial loss in animal industry, which renders a reduction in feed intake and growth. Zearalenone(ZEA)and deoxynivalenol(DON)are widely found in feed of livestock and aflatoxin B1(AFB1)has been demonstrated that effects livestock the most serious in various reports. Previous studies have shown that ZEA, DON, and AFB1 affecting on animal reproduction, but most research have focused on assessing the harmful effects of single mycotoxin on the oocyte maturation stage. However, the toxin mechanism of the developmental on porcine oocytes when exposed to different mycotoxins simultaneously has not been clarified. Therefore, the objective of this study is to evaluate the mycotoxin combination of α-ZOL, DON and AFB1 will be explored in vitro maturation(IVM)stage, in vitro culture(IVC)stage and different in vitro culture stages on the development of parthenogenetic porcine embryos. The in vitro maturation(IVM)stage shows that the maturation rate(65.7, 59.1 and 52.4%)and blastocyst rate(17.9, 14.0 and 4.8%) of 1 μM α-zearalenol, deoxynivalenol and aflatoxin B1 were significantly lower(p < 0.05) than the positive control group(71.9 and 40.5%) and negative(0.1% DMSO) control group(70.1 and 38.3%) while the AFB1 group cause the lowest maturation rate and blastocyst rate. The IVM stage with different mycotoxin combination also demonstrate that the group with AFB1 causing the most harmful effects on porcine embryo. In IVC stage, the blastocyst rate(8.0 %) of α-ZOL group has a significantly lower(p < 0.05) than the positive control group(45.0%) and negative control group(46.7%) while there is no blastocyst were observed in DON and group. The IVC stage with different mycotoxin combination also shows that the blastocyst rate(23.3%) of Z+D+A was significantly lower(p < 0.05) than the positive control group(41.7%) and negative control group(45.8%), but significantly higher(p < 0.05) than the Z+D(7.5%)、D+A(6.7%) and A+Z(6.7%) group. In the different IVC stage demonstrated that the culture medium on day 1-2 supplemented with α-ZOL, DON and AFB1 sharing a significantly lower(p < 0.05) blastocyst rate(23.0, 20.3 and 18.0%) than the group with mycotoxin on day 3-4(43.5, 34.2 and 33.8%). Similarly in the different IVC stage with different mycotoxins combination, the groups with mycotoxins on day 1-2 have a significantly(p < 0.05) lower blastocyst rate(5.0-14.1%) than the groups with mycotoxins on day 3-4(19.6-27.2%). In conclusion, the medium which are supplemented with α-ZOL、DON and AFB1 may reduce the development on porcine oocytes and embryos in IVM and IVC stage especially with AFB1. It was found that the mycotoxins cause an inferior negative effect on the blastocyst rate prior to the block stage.
中文摘要..........................................................................................................II
Abstract...........................................................................................................IV
目 錄...........................................................................................................VII
圖表目錄.........................................................................................................VI
壹、前言.............................................................................................................1
貳、文獻回顧.....................................................................................................3
一、黴菌毒素之概述...............................................................................3
二、玉米赤黴烯酮(Zearalenone, ZEA)...................................................4
三、嘔吐毒素(deoxynivalenol, DON)......................................................7
四、黃麴毒素(aflatoxin).....................................................................9
參、試驗研究.................................................................................................11
一、材料方法.........................................................................................11
二、結果...................................................................................................23
三、討論...................................................................................................34
四、結論...................................................................................................40
肆、參考文獻...................................................................................................41
伍、作者簡介...................................................................................................54
表1、豬胚體外培養液(pZM-3)成分表.....................................................22
表2、體外成熟培養液中添加1 μMα-ZOL、DON及AFB1對豬卵母細胞成熟及後續發育能力之影響 ...........................................................28
表3、體外成熟培養液中添加1 μM Z+D、D+A、A+Z及Z+A+D對豬卵母細胞成熟及後續發育能力之影響.................................................29
表4、體外培養液中添加1 μM α-ZOL、DON及AFB1對豬卵母細胞成熟及後續發育能力之影響.....................................................................30
表5、體外培養液中添加1 μM Z+D、D+A、A+Z及Z+A+D對豬卵母細胞成熟及後續發育能力之影響.........................................................31
表6、不同體外成熟階段培養液中添加1 μMα-ZOL、DON及AFB1對豬卵母細胞成熟及後續發育...............................................................32
表7、不同體外成熟階段培養液中添加1 μM Z+D、D+A、A+Z及Z+A+D對豬卵母細胞成熟及後續發育.........................................................33
洪國峻. 2018. 黴菌毒素種類及培養階段對孤雌激活豬胚後續發育能力之影響. 國立屏東科技大學動物科學與畜產系碩士學位論文,屏東縣。
Aberg, A. T., A. Solyakov and U. Bondesson. 2013. Development and in-house validation of an LC–MS/MS method for the quantification of the mycotoxins deoxynivalenol, zearalenone, T-2 and HT-2 toxin, ochratoxin A and fumonisin B1 and B2 in vegetable animal feed. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 30:541–549.
Abnet, C. C. 2007. Carcinogenic food contaminants. Cancer Invest. 25: 189–196.
Ali I., S. Z. A. Shah, Y. Jin, Z. S. Li, O. Ullah and N. Z. Fang. 2017. Reactive oxygen species mediated unfolded protein response pathways in preimplantation embryos. J Vet Sci. 18:1–9.
Alm, H., T. Greising, K. p. Brüssow, H. Torner and U. Tiemann. 2002. The influence of the mycotoxins deoxynivalenol and zearalenol on in vitro maturation of pig oocytes and in vitro culture of pig zygotes. Toxicol. In Vitro. 16: 643–648.
Arora, R. G., H. Frolen, A. Nilsson. 1981. Interference of mycotoxins with prenatal development of the mouse. I. Influence of aflatoxin B1, ochratoxin A and zearalenone. Acta Vet. Scand. 22: 524–534.
Bavister, B. D. 1995. Culture of preimplantation embryos: facts and artifacts. Hum. Reprod. Update. 1: 91–148.
Bavister, B. D., M. L. Leibfried, G. Lieberman. 1983. Development of preimplantation embryos of golden hamster in a defined culture medium. Biol Reprod. 28: 235–247.
Bhat, R., V. Ravishankar, A. Rai and A. Karim. 2010. Mycotoxins in Food and Feed: Present Status and Future Concerns. CRFSFS. 9(1):57–81.
Binder, E.M. 2007. Managing the risk of mycotoxins in modern feed production. Anim. Feed Sci. Technol. 133: 149–166.
Cadet, J., J. L. Ravanat, M. Tavernaporro, H. Menoni and D. Angelov. 2012. Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer Lett. 327: 5–15.
Carere, J., Y. I. Hassan, D. Lepp and T. Zhou. 2017. The enzymatic detoxification of the mycotoxin deoxynivalenol: identification of DepA from the DON epimerization pathway. Microb. Biotechnol.
Caruso, M., A. Mariotti, C. Zizzadoro, A. Zaghini, P. Ormas, A. Altafini and C. Belloli. 2009. A clonal cell line(BME-UV1) as a possible model to study bovine mammary epithelial metabolism: metabolism and cytotoxicity of aflatoxin B1. Toxicon. 53(4):400–8.
Chaytor, A. C., M. T. See, J. A. Hansen, A. L. de Souza, T. F. Middleton, S.W. Kim. 2011. Effects of chronic exposure of diets with reduced concentrations of aflatoxin and deoxynivalenol on growth and immune status of pigs. J. Anim. Sci. 89: 124–135.
Christakos, S., D. V. Ajibade, P. Dhawan, A.J. Fechner and L.J. Mady. 2010. Vitamin D: metabolism. Endocrinol. Metab. Clin. North Am. 39(2): 243–253.
Claus, R., C. Hoang-Vu, F. Ellendorff, H. D. Meyer, D. Schopper and U. Weiler. 1987. Seminal oestrogens in the boar: origin and functions in the sow. J. Steroid Biochem. 27: 331–335.
Corcuera, L.A., M. Ibáñez-Vea, A. Vettorazzi, E. González-Peñas and A. López de Certain. 2011. Validation of a UHPLC-FLD analytical method for the simultaneous quantification of aflatoxin B1 and ochratoxin A in rat plasma, liver and kidney. J. Chromatogr. B. 879: 2733–2740.
Cortinovis, C., F. Caloni, N. B. Schreiber and L. J. Spicer. 2014. Effects of fumonisin B1 alone and combined with deoxynivalenol or zearalenone on porcine granulosa cell proliferation and steroid production. Theriogenology. 81(8):1042–1049.
Doi, K. and K. Uetsuka. 2011. Mechanisms of mycotoxin-induced neuro-toxicity through oxidative stress-associated pathways. Int. J. Mo.l Sci. 12:5213–5237.
Eriksen, G. S., H. Pettersson. Toxicological evaluation of trichothecenes in animal feed. 2004. Anim. Feed Sci. and Technol. 114: 205–239.
Feng, H. L., X. H. Wen and S. C. presser. 1996. Effect of different co-culture systems in early human embryo development. Hum Reprod. 11: 1525–1528.
Gajęcka, M., L. Rybarczyk, E. Jakimiuk, Ł. Zielonka, K. Obremski, W. Zwierzchowski and M. Gajęcki. 2012. The effect of experimental long⁃term exposure to low⁃ dose zearalenone on uterine histology in sexually im⁃ mature gilts. Exp. Toxicol. pathol. 64: 537–542.
Gallo, A., G. Giuberti, J. C. Frisvad, T. Bertuzzi and K. F. Nielsen. 2015. Review on mycotoxin issues in ruminants: occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins(Basel). 7: 3057–3111.
Gao, X., P. Mu, J. Wen, Y. Sun, Q. Chen, and Y. Deng. 2018. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9. Food Chem. Toxicol. 112: 310–319.
Garverick, H. A. 1999. Ovarian follicular dynamics and endocrine profiles in cows with ovarian follicular cysts. Can Vet J. 577–580.
Gautam, P., and R. Dill-Macky. 2011. Type I host resistance and trichothecene accumulation in fusarium-infected wheat heads. American J. Agricul. and Biol. Sci. 6(2): 231–241.
Gerez, J. R., P. Pinton, P. Callu, F. Grosjean, I. P. Oswald and A. P. Bracarense. 2014. Deoxynivalenol alone or in combination with nivalenol and zearalenone induce systemic histological changes in pigs. Exp. Toxicol. Pathol. 67(2): 89–98.
Gnonlonfin, G. J. B., K. Hell, Y. Adjovi, P. Fandohan, D. O. Koudande, G. A. Mensah, A. Sanni and L. Brimer. 2013. A review on aflatoxin contamination and its implications in the developing world: a sub-Saharan African perspective. Crit. Rev. Food Sci. Nutr. 53(4):349–65.
Gong, Y., A. Hounsa, S. Egal, p. C. Turner, A. E. Sutcliffe, A. J. Hall, K. Cardwell and C. P. Wild. 2004. postweaning exposure to aflatoxin results in impaired child growth: a longitudinal study in Benin, West Africa. Environ. Health perspect. 112: 1334–1338.
Goyarts, T., S. Dänicke, H. J. Rothkötter, J. Spilke, U. Tiemann and M. Schollenberger. 2005. On the effects of a chronic deoxynivalenol intoxication on performance, haematological and serum parameters of pigs when diets are offered either for ad libitum consumption or fed restrictively. J. Vet. Med. A physiol. pathol. Clin. Med. 52: 305–314.
Guerin, P. E., S. Mouatassim and Y. Menezo. 2001. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 7:175-189.
Gui, L. M. and I. M. Joyce. 2005. RNA interference evidence that growth differentiation factor-9 mediates oocyte regulation of cumulus expansion in mice. Biol. Reprod. 72: 195–199.
Han, J., Q. C. Wang, C. C. Zhu, J. Liu, Y. Zhang, X. S. Cui, N. H. Kim and S. C. Sun. 2016. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation. Toxicol. Appl. pharmacol. 300: 70-76.
Haschek, W. and J. C. Haliburton. 1986. Fusarium moniliforme and zearalenone toxicoses in domestic animals: a review. Diagnosis of Mycotoxicoses. 1: 213–235.
He, C.H., Y. H. Fan, Y. Wang, C. Y. Huang, X. C. Wang and H. B. Zhang. 2010. The individual and combined effects of deoxynivalenol and aflatoxin B1 on primary hepatocytes of Cyprinus carpio. Int. J. Mol. Sci. 11(10): 3760–3768.
Hernandez-Vargas, H., J. Castelino, M. J. Silver, P. Dominguez-Salas, M. P. Cros and G. Durand. 2015. Exposure to aflatoxin B1 in utero is associated with DNA methylation in white blood cells of infants in the Gambia. Int J Epidemiol. 44:1238–1248.
Hussein, T. S., D. A. Froiland, F. Amato, J. G. Thompson, R. B. Gilchrist. 2005. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J. Cell Sci. 118: 5257–5268.
Hussein, T. S., J. G. Thompson and R. B. Gilchrist. 2006. Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296: 514–521.
Ibeh, I. N., D. K. Saxena and N. Uraih. 2000. Toxicity of aflatoxin: effects on spermatozoa, oocytes, and in vitro fertilization. J. Environ. pathol. Toxicol. Oncol. 19: 357–361.
Ju, J. C., J. E. Parks and X. Yang. 1999. Thermotolerance of IVM-derived bovine oocytes and embryos after shortterm heat shock. Mol Reprod. 53:336–340.
Katzenellenbogen, B. S., J. A. Katzenellenbogen and D. Mordecai. 1979. Zearalenones: characterization of the estrogenic potencies and receptor interactions of a series of fungal beta-resorcylic acid lactones. Endocrinology. 105: 33–40.
Kelly, A. Hirota, E. Ghenoiu, C., J. Z. Xue, C. Zierhut, H. Kimura, and H. Funabiki. 2010. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science. 330:235–239.
Kiang, D. T., B. J. Kennedy, S. V. pathre and C. J. Mirocha. 1978. Binding characteristics of zearalenone analogs to estrogen receptors. Cancer Res. 38: 3611–3615.
Kipp, J. L. and V. D. Ramirez. 2003. Estradiol and testosterone have opposite effects on microtubule polymerization. Neuroendocrinology. 77: 258–272.
Komsky-Elbaz, A., M. Saktsier and Z. Roth. Aflatoxin B1 impairs sperm quality and fertilization competence. 2018. Toxicology. 393:42–50.
Kosicki, R., A. Błajet-Kosicka, J. Grajewski, M. Twarużek. 2016. Multiannual mycotoxinsurvey in feed materials and feedingstuffs. Anim. Feed Sci. Technol. 215: 165–180.
Kuiper, G. G., J. G. Lemmen, B. Carlsson, J. C. Corton, S. H. Safe, P. T. van der Saag, B. van der Urg and J. A. Gustafsson. 1998. Interaction of estrogenic chemicals and phyto estrogens with estrogen receptor beta. Endocrinology 139: 4253–4263
Lee, K. S., B. S. Joo, Y. J. Na, M. S. Yoon, O. H. Choi and W. W. Kim. 2000. Relationships between concentrations of tumor necrosis factor-alpha and nitric oxide in follicular fluid and oocyte quality. J. Assist. Reprod. Genet. 17: 222–228.
Li, D., H. Ma, Y. Ye, C. Ji, X. Tang, D. Ouyang, J. Chen, Y. Li and Y. Ma. 2014. Deoxynivalenol induces apoptosis in mouse thymic epithelial cells through mitochondria-mediated pathway. Environ. Toxicol. Pharmacol. 38: 163–171.
Li, D., Y. Ye, S. Lin, L. Deng, X. Fan, Y. Zhang, X. Deng, Y. Li, H. Yan and Y. Ma. 2014. Evaluation of deoxynivalenol-induced toxic effects on DF-1 cells in vitro: cell-cycle arrest, oxidative stress, and apoptosis. Environ. Toxicol. pharmacol. 37: 141–149.
Li, H.K., T. Y. Kuo, H. S. Yang, L. R. Chen, S. S. Li and H. W. Huang. 2008. Differential gene expression of bone morphogenetic protein 15 and growth differentiation factor 9 during in vitro maturation of porcine oocytes and early embryos. Anim. Reprod. Sci. 103: 312–322.
Liu, J., Q. C. Wang, J. Han, B. Xiong and S. C. Sun. 2015. Aflatoxin B1 is toxic to porcine oocyte maturation. Mutagenesis. 30: 527–535.
Liu, X. L., R. Y. Wu, X. F. Sun, S. F. Cheng, R. Q. Zhang, T. Y. Zhang, X. F. Zhang, Y. Zhao, W. Shen and L. Li. 2018. Mycotoxin zearalenone exposure impairs genomic stability of swine follicular granulosa cells in vitro. Int. J. Biol. Sci.14: 294–305.
Long, G.G. and J.J. Turek. 1989. Effect of zearalenone on the growth of mouse embryos from blastocysts to the egg cylinder stage in vitro. Am. J. Vet. Res. 50: 296–300.
Ma, C. H., L. Y. Yan, J. Qiao, W. Sha, L. Li, Y. Chen and Q. Y. Sun. 2010. Effects of tumor necrosis factor-alpha on porcine oocyte meiosis progression, spindle organization, and chromosome alignment. Fertil. Steril. 93: 920–926.
Madalena, M., M. M. C. Sobral, M. A. Faria, S. C. Cunha and I. M. P. L. V. O. Ferreira. 2018. Toxicological interactions between mycotoxins from ubiquitous fungi: Impact on hepatic and intestinal human epithelial cells. Chemosphere. 202: 538–548.
Malekinejad, H., E. J. Schoevers, I. J. Daemen, C. Zijlstra, B. Colenbrander, J. Fink-Gremmels and B. A. Roelen. 2007. Exposure of oocytes to the Fusarium toxins zearalenone and deoxynivalenol causes aneuploidy and abnormal embryo development in pigs. Biol. Reprod. 77: 840–847.
Malekinejad, H., R. F. Maas-Bakker and J. Fink-Gremmels. Bioactivation of zearalenone by porcine hepatic biotransformation. 2005. Vet. Res. 36:799–810.
Manthey, F. A., C. E. Wolf-Hall, S. Yalla, C. Vijayakumar and D. Carlson. 2004. Microbial loads, mycotoxins, and quality of durum wheat from the 2001 harvest of the Northern Plains region of the United States. J Food Prot. 67:772–780.
Marin, D. E., I. Taranu, R. Burlacu and D. S. Tudor. 2010. Effects of zearalenone and its derivatives on the innate immune response in swine. Toxicon. 56: 956–963.
Marin, D. E., I. Taranu, R. Burlacu, G. Manda, M. Motiu, I. Neagoe, C. Dragomir, M. Stancu and L. Calin. 2011. Effects of zearalenone and its derivatives on porcine immune response. Toxicol. 25: 1981-1988.
Medina, A., A. Rodríguez, Y. Sultan and N. Magan. 2015. Climate change factors and Aspergillus flavus: effects on gene expression, growth and aflatoxin production. World Mycotoxin J. 8: 171–179.
Minervini, F., M. E. Dell'Aquila, F. Maritato, P. Minoia and A. Visconti. 2001. Toxic effects of the mycotoxin zearalenone and its derivatives on in vitro maturation of bovine oocytes and 17 beta-estradiol levels in mural granulosa cell cultures. Toxicol. In Vitro. 15: 489–495.
Miraglia, M., H. J. Marvin, G. A. Kleter, P. Battilani, C. Brera, E. Coni, F. Cubadda, L. Croci, B. De Santis, S. Dekkers, L. Filippi, R. W. Hutjes, M. Y. Noordam, M. Pisante, G. Piva, A. Prandini, L. Toti, G. J, van den Born and A. Vespermann. 2009. Climate change and food safety: an emerging issue with special focus on Europe. Food Chem. Toxicol. 47: 1009–1021.
Mok, C. H., S. Y. Shin and B. G. Kim. 2013. Aflatoxin, deoxynivalenol, and zearalenone in swine diets: predictions on growth performance. Rev. Colomb. Cienc. Pecu. 26: 243–254.
Monson, M.S., R. A. Coulombe and K. M. Reed. 2015. Aflatoxicosis: lessons from toxicity and responses to aflatoxin B1 in poultry. Agriculture. 5:742–77.
Morrissey, R. E. and R. F. Vesonder. 1985. Effect of deoxynivalenol(vomitoxin) on fertility, pregnancy, and postnatal development of Sprague-Dawley rats. Appl. Environ. Microbiol. 49(5): 1062–1066.
Nährer, K. and P. Kovalsky. 2013. A summary of the major threats. BIOMIN Mycotoxin Survey.
Nikaido, Y., K. Yoshizawa, N. Danbara, M. Tsujita-Kyutoku, T. Yuri, N. Uehara and A. Tsubara. 2004. Effects of maternal xenoestrogen exposure on development the reproductive tract and mammary gland in female CD-1 mouse offspring. Reprod. Tocicol. 18:803–811.
Osweiler, G.D. 1986. Occurrence and clinical manifestations of trichothecene toxicoses and zearalenone toxicoses. Diagnosis of Mycotoxicoses. 31–50.
Park, K. E., L. Magnani and R. A. Cabot. 2009. Differential remodeling of mono- and trimethylated H3K27 during porcine embryo development. Mol. Reprod. Dev. 76: 1033–1042.
Payros, D., I. Alassane-Kpembi, A. pierron, N. Loiseau, P. pinton and I. P. Oswald. 2016. Toxicology of deoxynivalenol and its acetylated and modified forms. Arch. Toxicol. 90: 2931–2957.
Pestka, J., and H. R. Zhou. 2006. Toll-like receptor priming sensitizes macrophages to proinflammatory cytokine gene induction by deoxynivalenol and other toxicants. Toxicol Sci. 92: 445–455.
Pestka, J. J. 2010. Deoxynivalenol-induced proinflammatory gene expression: mechanisms and pathological sequelae. Toxins. 2: 1300–1317.
Pestka, J. J. and A. T. Smolinski. 2005. Deoxynivalenol: toxicology and potential effects on humans. J. Toxicol. Environ. Health B Crit. Rev. 8: 39–69.
Pestka, J. J., H. R. Zhou, Y. Moon and Y. J. Chung. 2004. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol. Lett. 153: 61–73.
Pestka, J. J. and H. R. Zhou. 2006. Toll-like receptor priming sensitizes macrophages to proinflammatory cytokine gene induction by deoxynivalenol and other toxicants. Toxicol Sci. 92(2):445–55.
Peters, L. P. and R. W. Teel. 2003. Effect of high sucrose diet on liver enzyme content and activity and aflatoxin B1-induced mutagenesis. In Vivo 17: 205–210.
Pinton, P.and I. P. 2014. Oswald. Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. Toxins(Basel). 6(5):1615–1643.
Przybylska-Gornowicz, B., B. Lewczuk, M. prusik, M. Hanuszewska, M. petrusewicz-Kosińska, M. Gajęcka, Ł. Zielonka and M. Gajęcki. 2018. The effects of deoxynivalenol and zearalenone on the pig large intestine. A light and electron microscopy study. Toxins(Basel). 10: 148.
Qi, L. N., T. Bai, Z. S. Chen, F. X. Wu, Y. Y. Chen, B. De Xiang, T. Peng, Z. G. Han and L. Q. Li. 2015. The p53 mutation spectrum in hepatocellular carcinoma from Guangxi, China: role of chronic hepatitis B virus infection and aflatoxin B1 exposur. Liver Int. Offic. J. Int. Assoc. Study Liver 35: 999–1009.
Rago, V., L. Siciliano, S. Aquila and A. Carpino. 2006. Detection of estrogen receptors ER-alpha and ER-beta in human ejaculated immature spermatozoa with excess residual cytoplasm. Reprod. Biol. Endocrinol. 4:36.
Reddy, K. E., J. Song, H. J. Lee, M. Kim, D. W. Kim, H. J. Jung, B. Kim, Y. Lee, D. Yu, D. W. Kim, Y. K. Oh and S. D. Lee. 2018. Effects of high levels of deoxynivalenol and zearalenone on growth performance, and hematological and immunological parameters in pigs. Toxins(Basel). 10: 114.
Reed, M. L., M. J. Illera and R. M. Petters. 1992. In vitro culture of pig embryos. Theriogenology. 37: 95–109
Roos, W. p. and B. Kaina. 2013. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett. 332: 237–248.
Rotter, B. A., Prelusky D. B., Pestka J. J. 1996. Toxicology of deoxynivalenol(vomitoxin). J. Toxicol. Environ. Health. 48: 1–34.
Rotter, B. A., B. K. Thompson, M. Lessard, H. L. Trenholm and H. Tryphonas. 1994. Influence of low-level exposure to Fusarium mycotoxins on selected immunological and hematological parameters in young swine. Fundam. Appl. Toxicol. 23: 117–124.
Rotter, B. A., D. B. prelusky and J. J. pestka. 1996. Toxicology of deoxynivalenol(vomitoxin). J. Toxicol. Environ. Health. 48: 1-34.
Salah-Abbès, J. B., S. Abbès, M. Abdel-Wahhab, R. Oueslati. 2010. Immunotoxicity of zearalenone in Balb/c mice in a high subchronic dosing study counteracted by Raphanus sativus extract. Immunopharmacol. Immunotoxicol. 32: 628–636
Sambuu, R., M. Takagi, Z. Namula, T. Otoi, S. Shiga, R. Rodrigues Dos Santos and J. Fink-Gremmels. 2011. Effects of exposure to zearalenone on porcine oocytes and sperm during maturation and fertilization in vitro. J. Reprod. Dev. 57: 547–550.
Savard, C., C. provost, F. Alvarez, V. pinilla, N. Music, M. Jacques, C. A. Gagnon and Y. Chorfi. 2015. Effect of deoxynivalenol(DON) mycotoxin on in vivo and in vitro porcine circovirus type 2 infections. Vet. Microbiol. 176: 257–267.
Schier, A. F. 2007. The maternal-zygotic transition: death and birth of RNAs. Science. 316: 406–407.
Schoevers, E. J., J. Fink-Gremmels, B. Colenbrander and B. A. Roelen. 2010. porcine oocytes are most vulnerable to the mycotoxin deoxynivalenol during formation of the meiotic spindle. Theriogenology. 74: 968–978.
Shin, K. T., J. Guo, Y. J. Niu and X. S. Cui. 2018. The toxic effect of aflatoxin B1 on early porcine embryonic development. Theriogenology. 118:157–163.
Smith, T. K., E. G. McMillan and J. B. Castillo. 1997. Effect of feeding blends of Fusarium mycotoxin-contaminated grains containing deoxynivalenol and fusaric acid on growth and feed consumption of immature swine. J. Anim. Sci. 75: 2184–2191.
Sobral, M. M. C., M. A. Faria, S. C. Cunha and I. M. P. L. V. O. Ferreira. 2018. Toxicological interactions between mycotoxins from ubiquitous fungi: Impact on hepatic and intestinal human epithelial cells. Chemosphere. 202:538–548.
Sobrova, P., V. Adam, A. Vasatkova, M. Beklova, L. Zeman, R. Kizek, P. Soto, R. P. Natzke and P. J. Hansen. 2003. Actions of tumor necrosis factor-alpha on oocyte maturation and embryonic development in cattle. Am. J. Reprod. Immunol. 50: 380–388.
Šperanda, M., B. Liker, T. Šperanda, V. Šerić, Z. Antunović, Z. Grabarević, Ð. Senčić, D. Grgurić and Z. Steiner. 2006. Haematological and biochemical parameters of weaned piglets fed on fodder mixture contaminated by zearalenone with addition of clinoptilolite. Acta Veterinaria. 56: 121–136.
Stabile, V., M. Russo and p. Chieffi. 2006. 17beta-estradiol induces Akt-1 through estrogen receptor-beta in the frog(Rana esculenta) male germ cells. Reproduction. 132: 477–484.
Streit, E., G. Schatzmayr, p. Tassis, E. Tzika, M. Marin, I. Taranu, C. Tabuc, A. Nicolau, I. Aprodu, O. puel, I. p. Oswald. 2012. Current situation of mycotoxin contamination and co-occurrence in animal feed—Focus on Europe. Toxins. 4: 788–809.
Streit, E., K. Naehrer, I. Rodrigues, G. Schatzmayr. 2013. Mycotoxin occurrence in feed and feed raw materials worldwide: long-term analysis with special focus on Europe and Asia. J. Sci. Food Agric. 93: 2892–2899.
Sun, L. H., M. Y. Lei, N. Y. Zhang, X. Gao, C. Li, C. S. Krumm and D. S., Qi. 2015. Individual and combined cytotoxic effects of aflatoxin B1, zearalenone, deoxynivalenol and fumonisin B1 on BRL 3A rat liver cells. Toxicon 95: 6–12.
Swamy, H. V., T. K. Smith, E. J. MacDonald, H. J. Boermans and E. J. Squires. 2002. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on swine performance, brain regional neurochemistry, and serum chemistry and the efficacy of a polymeric glucomannan mycotoxin adsorbent. J. Anim. Sci. 80: 3257–3267.
Swamy, H. V., T. K. Smith, E. J. MacDonald, N. A. Karrow, B. Woodward and H. J. Boermans. 2003. Effects of feeding a blend of grains naturally contaminated with Fusarium mycotoxins on growth and immunological measurements of starter pigs, and the efficacy of a polymeric glucomannan mycotoxin adsorbent. J. Anim. Sci. 23: 117–124.
Takagi, M., S. Mukai, T. Kuriyagawa, K. Takagaki, S. Uno and E. Kokushi. 2008. Detection of zearalenone and its metabolites in naturally contaminated follicular fluids by using LC/MS/MS and in vitro effects of zearalenone on oocyte maturation in cattle. Reprod. Toxicol. 26:164–169.
Tamura, H., A. Takasaki, I. Miwa, K. Taniguchi, R. Maekawa, H. Asada, T. Taketani, A. Matsuoka, Y. Yamagata, K. Shimamura, H. Morioka, H. Ishikawa, R. J. Reiter and N. Sugino. 2008. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J. Pineal Res., 44: 280–287.
Tesarík, J. 1989. Involvement of oocyte-coded message in cell differentiation control of early human embryos. Development. 105: 317–322.
Theumer, M. G., Y. Henneb, L. Khoury, S. p. Snini, S. Tadrist, C. Canlet, O. puel, I. p. Oswald and M. Audebert. 2018. Genotoxicity of aflatoxins and their precursors in human cells. Toxicol. Lett. 287: 100–107.
Tsakmakidis, I. A, A. G. Lymberopoulos, C. Alexopoulos, C. M. Boscos and S. C. Kynakis. 2006. In vitro effect of zearalenone and α-zearalenol on boar sperm characteristics and acrosome reaction. Reprod. Dom. Anim. 41: 394–401.
Ueno Y. 1985. The toxicology of mycotoxins. Crit. Rev. Toxicol. 14: 99–132.
Ueno Y. 1988. Toxicology of trichothecene mycotoxins. Sci. pharm. 2: 121–124.
Veselý, D. and D. Veselá. 1995. Embryotoxic effects of a combination of zearalenoneand vomitoxin(4-dioxynivalenole) on the chick embryo. Vet. Med.(praha) 40: 279–281.
Wang, H., O. C. Rodriguez and E. Memili. 2012. Mycotoxin alpha-zearalenol impairs the quality of preimplantation porcine embryos. J. Reprod. Dev. 58: 338–343.
Wang, W. H. and Q.Y. Sun. 2006. Meiotic spindle, spindle checkpoint and embryonic aneuploidy. Front. Biosci. 11: 620–636.
Wang, X., Q. Liu, A. Ihsan, L. Huang, M. Dai, H. Hao, G. Cheng, Z. Liu, Y. Wang and Z. Yuan. 2012. JAK/STAT pathway plays a critical role in the proinflammatory gene expression and apoptosis of RAW264.7 cells induced by trichothecenes as DON and T-2 toxin. Toxicol. Sci. 127: 412–424.
Waśkiewicz, A., M. Beszterda, M. Kostecki, Ł. Zielonka, P. Goliński and M. Gajęcki. 2014. Deoxynivalenol in the gastrointestinal tract of immature gilts under per os toxin application. Toxins 6: 973-987.
Wasler, C. B. and H. D. Lipshitz. 2011. Transcript clearance during the maternal-to-zygotic transition. Curr. Opin. Genet. Dev. 21: 431–443.
Weaver, A. C., M. T. See, J. A. Hansen, Y. B. Kim, A. L. De Souza, T. F. Middleton and S. W. Kim. 2013. The use of feed additives to reduce the effects of aflatoxin and deoxynivalenol on pig growth, organ health and immune status during chronic exposure. Toxins(Basel). 5: 1261–1281.
Weaver, G. A., H. J. Kurtz, J. C. Behrens, T. S. Robison, B. E. Seguin, F. Y. Bates and C. J. Mirocha. 1986. Effect of zearalenone on the fertility of virgin dairy heifers. Am. J. Vet. Res. 47: 1395–1397.
Wielogórska, E., S. MacDonald and C. T. Elliot. 2016. A review of the efficacy of mycotoxin detoxifying agents used in feed in light of changing global environment and legislation. World Mycotoxin J. 9: 419–433.
Williams, J. H., T. D. phillips, p. E. Jolly, J. K. Stiles, C. M. Jolly and D. Aggarwal. 2004. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 80: 1106–1122.
Xiong, J. L., Y. M. Wang, T. D. Nennich, Y. Li and J. X. Liu. 2015. Transfer of dietary aflatoxin B1 to milk aflatoxin M1 and effect of inclusion of adsorbent in the diet of dairy cows. J Dairy Sci. 98(4):2545–2554.
Yang, H., D.H. Chung, Y. B. Kim, Y. H. Choi and Y. Moon. 2008. Ribotoxic mycotoxin deoxynivalenol induces G2/M cell cycle arrest via p21Cip/WAF1 mRNA stabilization in human epithelial cells. Toxicology. 243:145–154.
Yoshioka, K., C. Suzuki, A. Tanaka, I. M. K. Anas and S. Iwamura. 2002. Birth of Piglets Derived from Porcine Zygotes Cultured in a Chemically Defined Medium. Biol. Reprod. 66(1):112–119.
Zachariasova, M., Z. Dzuman, Z. Veprikova, K. Hajkova, M. Jiru, M. Vaclavikova, A. Zachariasova, M. Pospichalova, M. Florian and J. Hajslova. 2014. Occurrence of multiple mycotoxins in European feedingstuffs, assessment of dietary intake by farm animals. Anim. Feed Sci. Technol. 193: 124–140.
Zhou, H., S. George, C. Hay, J. Lee, H. Qian and X. Sun. 2017. Individual and combined effects of aflatoxin B1, deoxynivalenol and zearalenone on HepG2 and RAW 264.7 cell lines. Food Chem. Toxicol. 103: 18–27.
Zhu, Y. P., T. Y. Ma, Y. L. Liu, T. Z. Ren and Z. Y. Yuan. 2014. Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorganic Chemistry Frontiers. 1:360–383.
Zuccotti, M., S. Garagna, V. Merico, M. Monti and C. Alberto Redi. 2005. Chromatin organisation and nuclear architecture in growing mouse oocytes. Mol Cell Endocrinol. 234: 11–17.
電子全文 電子全文(網際網路公開日期:20240803)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊