跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/11 05:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃威儒
研究生(外文):Huang, Wei-Ju
論文名稱:齒型鏈節座熔模澆鑄系統之優化設計與實驗驗證
論文名稱(外文):Optimization Design and Experimental Verification of Investment Casting System for Toothed Chain Joints
指導教授:周春禧黃培興
指導教授(外文):Chou, Chuen-ShiiHuang, Pei-Hsing
口試委員:方得華郭振坤
口試委員(外文):Fang, Te-HuaKuo, Jenn-Kun
口試日期:2019-05-24
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:82
中文關鍵詞:熔模鑄造殘餘熔體模數Niyama保溫棉
外文關鍵詞:Investment castingResidual melt modulusNiyama criterionInsulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
熔模鑄造具高精度、表面光緻與成本較低等優勢,廣泛應用國防、航太及醫療等領域。初始方案成品若有缺陷,首先考慮優化製程參數,成效不佳時,即會優化澆鑄系統,囊括改變澆鑄系統設計、包覆保溫棉或局部泡水等。研究標的物齒型鏈節座,使用於船舶載具起重之用途,鑄造成品內部,若殘留孔洞缺陷,除了降低機械強度外,長期使用下,將造成裂隙與潛變等破壞,導致傳動鏈條突然斷裂,造成人員及機具之重大危害。透過數值模擬澆鑄過程中,熔融鐵水於鑄模內的流場變化,與觀察鑄品凝固過程之方向性,本研究結合殘餘熔體模數法及Niyama組合缺陷參數法,預測齒型鏈節座,產生縮孔及縮鬆等缺陷之機率。
最終模擬結果顯示,最佳製程參數為澆鑄溫度1650℃、陶殼溫度900℃,並於鑄模外包覆6mm的保溫棉,能有效延緩熔融金屬凝固的時間,藉由模擬模型設置感測點,可更清楚確認熔融金屬,由液相線溫度轉為固相線溫度的時間,由初始方案的100秒增加至改善方案的110秒,雖然僅增加約10秒的補縮時間,但產生縮孔縮鬆等缺陷的情況,皆已獲得顯著的改善,實驗成品經由RT非破壞檢驗,確認鑄件內皆無產生縮孔縮鬆缺陷的情況。
Investment casting offers the advantages of high precision, smooth surfaces, and lower costs. It is thus widely applied in fields such as national defense, aerospace, and medicine. If the products of the initial scheme have defects, then process parameters are first optimized. In the event that process parameter optimization is not effective, then the gating system is optimized, which includes altering the design of the gating system, adding insulation, or partially soaking the mold in water. The subject matter of this study, toothed chain joint, is used to lift ships. Any pore defects within the casting product will reduce their mechanical strength, and long-term use will cause failures such as creep and fissures. The conveyor chain could suddenly break and severely injure personnel or damage equipment. Numerical simulations of casting processes can show the changes in molten metal flows in the mold and the direction of solidification. This study combined the retained melt modulus and combined defect parameters derived from the Niyama criterion to predict the probability of shrinkage porosity and cavities forming in toothed chain joint.
The final simulation results revealed that the optimal process parameters included pouring temperature 1650℃and ceramic shell temperature 900℃. Covering the mold with 6 mm of insulation also effectively delayed the solidification of the molten metal. Sensor points selected based on the simulation model confirmed the time at which the liquidus temperature of the molten metal became the solidus temperature, moving from the 100 sec in the initial scheme to 110 sec in the improved scheme. Despite the mere increase of 10 sec in the feeding time, significant improvements were shown in the shrinkage porosity and cavity defects. Radiographic non-destructive testing confirmed the absence of shrinkage porosity and cavity defects in experimental products.
摘要 I
AbstractII
謝誌 IV
目錄 V
表目錄 IX
圖目錄 X
符號索引 XIV
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻回顧 4
1.3.1 精密鑄造缺陷成因 4
1.3.2 電腦輔助工程分析 5
1.4 本文架構 7
第2章 精密鑄造基礎理論與數值模擬 8
2.1 精密鑄造基礎理論 8
2.1.1 加熱(heating) 8
2.1.2 熔融金屬澆鑄(pouring the molten metal) 8
2.1.3 冷卻及凝固(cooling and solidification) 9
2.1.4 收縮(shrinkage) 11
2.2 鑄造缺陷成因暨澆鑄系統設計理論 12
2.2.1 澆鑄系統設計理論 13
2.3 CAE數值模擬基礎理論 14
2.3.1 物理及數學運算模組 14
2.3.2 精密鑄造缺陷預測準則 18
第3章 齒型鏈節座初始方案缺陷預測暨比對 19
3.1 齒型鏈節座結構分析 21
3.2 澆鑄材質與製程參數 22
3.3 初始方案與數值模擬 23
3.3.1 澆鑄系統設計理念 23
3.3.2 初始方案澆鑄過程解析 24
3.3.3 初始方案凝固過程解析 25
3.3.4 初始方案缺陷預測解析 26
3.4 初始方案驗證與RT非破壞檢驗 32
第4章 齒型鏈節座改善方案缺陷預測暨比對 34
4.1 改善方案設計理念與CAE數值模擬 35
4.1.1 改善方案一澆鑄系統設計理念 35
4.1.1.1 方案一澆鑄過程解析 35
4.1.1.2 方案一凝固過程解析 36
4.1.1.3 方案一缺陷預測解析 37
4.1.2 改善方案二澆鑄系統設計理念 40
4.1.2.1 方案二澆鑄過程解析 41
4.1.2.2 方案二凝固過程解析 42
4.1.2.3 方案二缺陷預測解析 43
4.2 運用保溫棉改善方案設計理念暨CAE數值模擬 47
4.2.1 改善方案三澆鑄系統設計理念 47
4.2.1.1 方案三凝固過程解析 48
4.2.1.2 方案三缺陷預測解析 49
4.2.2 改善方案四澆鑄系統設計理念 52
4.2.2.1 方案四凝固過程解析 53
4.2.2.2 方案四缺陷預測解析 54
4.2.3 改善方案五澆鑄系統設計理念 57
4.2.3.1 方案五凝固過程解析 58
4.2.3.2 方案五鑄造缺陷預測解析 59
4.3 澆鑄系統進模口凝固速度分析 61
4.4 澆鑄方案試驗 65
4.4.1 蠟模暨組樹 65
4.4.2 澆鑄製程實驗 67
4.5 齒型鏈節座改善方案驗證與RT非破壞檢驗 69
第5章 結論及建議 70
5.1 結論 70
5.2 建議 72
參考文獻 76
[1]張晉昌,2013,鑄造學,全華圖書股份有限公司,新北。
[2]林宗献,2012,精密鑄造學,全華圖書股份有限公司,新北。
[3]龔肇鑄,2002,鑄造學,新文京開發出版股份有限公司,新北。
[4]林文和,邱傳聖,1990,鑄造學,高立圖書有限公司,臺北。
[5]洪敏雄,王木琴,許志雄,蔡明雄,呂英治,方冠榮,盧陽明,2015,工程材料科學,全華圖書股份有限公司,新北。
[6]劉國雄,鄭晃忠,李聖隆,林樹均,葉均蔚,2006,工程材料科學(新版),全華科技圖書股份有限公司,臺北。
[7]李代敘,2012,Moldflow模流分析從入門到精通,清華大學出版社,中國。
[8]李日,馬軍賢,崔啟玉,2010,鑄造工藝仿真ProCAST從入門到精通,中國水利水電出版社,中國。
[9]Kalpakjian, S., Schmid, S., 2003, “Manufacturing Engineering & Technology, Fifth Edition,” Pearson Education. Inc, pp. 292-317, Upper Saddle River. NJ.
[10]Groover, M. P., 2007, “Fundamentals of Modern Manufacturing 3/e Materials, Processes, and Systems,” John Wiley & Sons. Inc, pp. 39-57
[11]陳勇,2009,基於CAE技術的鑄件的澆注系統設計及工藝優化,碩士論文,南昌大學,中國。
[12]黃宗輝,2009,基於AnyCasting 的M3500 蠕鐵氣缸蓋鑄造工藝優化,碩士論文,上海交通大學,中國。
[13]葉海煒,2012,航空葉輪熔模精密鑄造過程的數值模擬研究,碩士論文,江蘇大學,中國。
[14]蔡全華,2015,鑄造方案管理與鑄鐵熔解技術,金屬工業研發中心,第1-48頁。
[15]李宥昀,2008,數值模擬在不銹鋼精密鑄造方案設計上的應用,碩士論文,國立成功大學,臺南。
[16]Yang, J., Dong, H.J., Xiong, S.M., 2005, “Prediction of shrinkage cavity and porosity in gray cast iron during solidification,” ACTA METALLURGICA SINICA, Vol.41, No.9, pp.929-932.
[17]Wang, C.L., 2003, “Analysis on prediction methods and criteria of shrinkage cavity and porosity in steel castings,” SHANXI MACHINERY, Vol.4, pp.8-10.
[18]Xu, N.B, Qin, T., 2012, “Exploration to Effect of Pouring Temperature on Shrinkage in Rotor Casting,” Foundry Technology, Vol.33, No.7, pp.824-825.
[19]Zhao, X.G., Xiao, Z.X., Guo, J.Z, 2015, “Study on the Threshold Value Of Simulated Shrinkage Porosity for a Large Steel Casting,” FOUNDRY, Vol.64, No.5, pp.425-429.
[20]Lu, Z.G., 2012, “History and Development Trend ofInvestment Casting Industry in China,” China Foundry, Vol. 4, No.61, pp.347-356.
[21]Zhu, J.C., Du, X.J.,Zhu S., 2013, “Precision Investment Casting Gear Without Cutting,” Hot Working Technology, Vol. 42, No.15, pp.347-356.
[22]Zhao, P., Nan, H., Huang, D., 2012, “Investment Casting TiAI Alloy Blades,” SPECIAL CASTING & NONFERROUS ALLOYS, Vol. 32, No.1, pp.63-65.
[23]Wu, D.T., 2011, “Quality Control of Aluminum Castings by Lost Wax Casting Process,” FOUNDRY TECHNOLGY, Vol. 32, No.10, pp.1395-1398.
[24]潘玉洪,2013,「熔模鑄件常見麻點缺陷分析」,鑄造,第7期,第70-71頁。
[25]Shao, K.Z., Li, T., Zhao, J.X, 2008, “Production Technology of Investment Casting Nozzles,” FOUNDRY , Vol. 57, No. 1, pp.23-24.
[26]Zhao, Q.X., Wang, G.J., Sun Z.R., Konc F.C., Chen G.Q. , 2014, “Casting Defect often Occorring with Gay Iorn Engine Cylinder Block and Their Prevention Measures, ” MODERN CAST IRON, Vol.1, pp.44-49.
[27]Kim, K.H., Hwang, J.H., Oh, J.S., Lee D.H., Kim, I.H., Yoon, Y.C., 2007, “Prediction of Shrinkage Defect in Steel Casting for Marine Engine Cylinder Cover by Numerical Analysis,” Técnicas de simulación avanzadas, pp. 1-9.
[28]Zhou, J.H., Sun, C.B., Shang, W., Li, B., 2013, “The application research of simulation technology in investment casting process,” Materials Science & Technology, Vol.21, No.5, pp.109-112.
[29]Zhou, J.X., Liu, R.X., Chen, L.L., Liao, D.M., 2004, “Applications of Foundry CAE in steel Casting,” Hot Working Technology, Vol. 42, No.15, pp.80-85.
[30]Zhang, Z.X., Huang, F., Meng, W.N., Liao, X.Y., 2015, “Casting Defect Analysis and Process Improvement of Steam Generator Support Based on AnyCasting,” FOUNDRY, Vol. 64, No.12, pp.1239-1246.
[31]Liu, G.J., Zheng, W.G., Li, W., Yang, N., 2016, “Die -casting Defect Analysis and process Improvement of shift Tower Based on Anycasting,” Journal of Guizhou University(Natural Sciences), Vol. 33, No.6, pp.26-28.
[32]Song, L.Q., Liu, W.H., Shen, Z.L., Ma, S.H., 2015, “Application of CAE Technology in Design of Foundry Technology,” Agricultural Equipment & Vehicle Engineering, Vol. 53, No.9, pp.65-68.
[33]Rouhollah T., 2014, “On the prediction of shrinkage defects by thermal criterion functions,” The International Journal of Advanced Manufacturing Technology, Vol. 74, No.1-4, pp.569-579.
[34]Zeng, L., Zhao, J.H., Song, G., 2011, “Application of Niyama Criterion in the Shrinkage Porosity Prediction of Metal Gravity Casting Aluminum Alloy Motorcycle Wheel,” Special Casting & Nonferrous Alloys, Vol. 31, No.9, pp.807-811.
[35]Fu, P.X., Kang, X.H., Ma, Y.C., Liu, K., Li, D.Z., Li, Y.Y., 2008, “Centrifugal casting of TiAl exhaust valves,” Intermetallics, Vol. 16, No.2, pp.130-138.
[36]Kwak, S. Y., Hwang, H. Y., Cho, C., 2014, “Thermal stress analysis method considering geometric effect of risers in sand mold casting process,” China Foundry, Vol. 11, No.6, pp.531-536.
[37]Huang P. H., Luo J. Y., Hung S. C., Lin C. J.,and Cheng H. H.,2014, “Optimal Pouring System Design for Investment Casting of Cladding Thin-Plate Heater Using Metallic Mold Flow Analyses,” Applied Mechanics and Materials, Vol. 627, pp. 46-49.
[38]Susan, D.F., Crenshaw, T.B., and Gearhart, J.S., 2015, “The Effects of Casting Porosity on the Tensile Behavior of Investment Cast 17-4PH Stainless Steel,”Journal of Materials Engineering and Performance, Vol. 24(8), pp. 2917-2924.
[39]Huang, P.H., Wu, W.J., Shieh, C.H., 2017, “Compute-Aided Design of Low Die-Casting Process of A356 Aluminum Wheels, ” Applied Mechanics and Materials, Vol. 864, pp. 173-178.
[40]Yu, B., 2011, “Application of AnyCasting Simulation Software in Automotive Parts Casting Process Design,” Foundry Engineering , Vol. 3, pp. 28-30.
[41]Keste, A.A., Gawande, S.H., Sarkar, C., 2016, “Design optimization of precision casting for residual stress reduction,” Journal of Computational Design and Engineering, Vol. 3, No. 2, pp.140-150.
[42]Chen, L., Huang, F., 2013, “Design of Exothermic and Insulaing Riser for Steel Casting of Gear Ring Seat Based on AnyCasting” FOUNDRY , Vol. 62, No. 3, pp.226-229.
[43]Perevertailo, V. M., Loginova, O. B., Lysovenko, S. A., 2015, “On the Criteria for the Surface Activity and Classification of the Surface Tension Isotherms from the Data on the Melt Structure” Journal of Superhard Materials, Vol. 37, No.4, pp.234-241.
[44]Yahaya, B., Izman, S., Idris, M.H., Dambatta, M.S., 2016, “Effects of Activated Charcoal on Physical and Mechanical Properties of Microwave Dewaxed Investment Casting Moulds,”CIRP Journal of Manufacturing Science and Technology, Vol. 13, pp. 97-103.
[45]Liotti,E. , Previtali, B., 2006, “Study of the Validityof the Niyama Criteria Functionapplied to the Alloy AlSi7Mg,”Allumino e leghe, pp. 33-37.
[46]Chaudhary, R., Ji, C., Thomas, B. G., Vanka, S. P., 2011, “Transient Turbulent Flow in a Liquid-Metal Model of Continuous Casting, Including Comparison of Six Different Methods,” Metallurgical and Materials Transactions, Vol. 42, pp. 987-1007.
[47]曾瑞宏,2015,「鑄件中的孔洞(porosity)(上)」,鑄造科技,第314期,第26-32頁。
[48]曾瑞宏,2015,「鑄件中的孔洞(porosity)(下)」,鑄造科技,第315期,第26-36頁。
[49]Anycasting, 2001, tutorial manual. Ver. 6.0.,Anycasting,Co., Ltd.Gangseo-gu, Seoul City.
[50]Mi, G.F., Liu, X.Y., Wang, K.F., Niu, J.T., 2009, “ Numerical simulation of low pressure die-casting aluminum wheel, ” China Foundry, Vol. 48, No. 1
[51]Huang, P.H., Chen, J.R., Wu, W.J., 2016, “Design of Casting System for Stainless Steel Enclosed Impeller Based on AnyCasting Numerical Simulations, ” Journal of Precision Machinery and Manufacturing Technology, Vol. 6, No. 2, pp. 11-17.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top