跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 18:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李方裕
研究生(外文):Fang-Yu Li
論文名稱:從廢棄材料合成並修飾氧化鈣做為二氧化碳吸附劑
論文名稱(外文):Synthesis of calcium oxide from waste materials and its modification for a carbon dioxide adsorbent
指導教授:謝淑貞謝淑貞引用關係
指導教授(外文):Shuchen Hsieh
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:97
中文關鍵詞:二氧化碳吸附表面修飾抗燒結材料綠色化學蛋殼氧化鈣
外文關鍵詞:Surface modificationAnti-sintering materialGreen chemistryEggshellCalcium oxideCarbon dioxide Adsorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
溫室氣體二氧化碳的排放,對氣候變遷造成的影響日漸嚴重,因此二氧化碳的減量及儲存再利用,便成為現代社會的重要議題。工業排碳製程通常都在高溫條件,而氧化鈣在高溫環境下,對二氧化碳的吸附效果極佳,故以氧化鈣當作二氧化碳吸附劑成為趨勢之一。然而,在高溫條件下進行多次循環吸附後發生劣化,則為氧化鈣的缺點之一,所以我們想改善此現象來維持氧化鈣的穩定性。本研究以常見的廢棄物蛋殼作為原料,其主要成分為碳酸鈣,經由化學處理後製備成氧化鈣。將實驗分成兩個部分,第一個部分是對氧化鈣進行表面修飾,利用不同的界面活性劑及含氨基高分子聚合物,合成出不同構型、孔洞大小的氧化鈣吸附劑。第二個部分則是加入抗燒結的金屬氧化物進行改質,材料則利用常見的廢棄材料鋁罐、廢鐵,經由化學前處理製備成鋁及鐵的前驅物。接著以傅立葉轉換紅外光譜儀(FTIR)、X-Ray粉末繞射儀(XRD)、掃描式電子顯微鏡(SEM)、比表面積與孔隙度分析儀(BET)等儀器進行特徵分析,並利用熱重分析儀(TGA)來進行二氧化碳吸附量的探討。經由第一部分研究結果發現,利用含氨基高分子聚合物修飾後的氧化鈣,其經由10次循環後二氧化碳的吸附量,和沒經過修飾的氧化鈣比較,有明顯的增加,其中以多巴胺修飾的效果最佳。而從第二部分結果顯示,添加鋁進行改質的氧化鈣,隨著鋁添加的比例增加,其劣化的現象得到顯著改善,並以Al:Ca=1:5這組的循環吸附效果最好。最後我們以本實驗改質的氧化鈣和市售的氧化鈣藥品相比,吸附量更是大大地提升。本實驗利用日常生活中常見的廢棄物蛋殼、鋁罐和廢鐵,進行氧化鈣的合成與改質,解決溫室氣體二氧化碳排放的問題,並且將廢棄物回收再利用的方式,也充分展現綠色化學的實踐。
The impact of CO2 on climate change is becoming more serious, so CO2 reduction, storage and reuse are very important. Industrial CO2 production processes are usually in high temperature conditions, and CaO has excellent adsorption of CO2 in high temperature environments. Therefore, it is one of the trends to use CaO as a CO2 adsorbent. However, deterioration occurs after performing multiple cycles of adsorption under high temperature conditions, which is one of the disadvantages of CaO. In this study, the common waste eggshell was used as the raw material, and its main component was CaCO3, which was prepared into CaO after chemical treatment. The experiment was divided into two parts. The first part was to modify the surface of CaO with different surfactants and amino-containing polymer. The second part was modified by adding anti-sintered metal oxide. The materials use common waste materials: aluminum cans, scrap iron. Then, the characteristics were analyzed by FT-IR, XRD, SEM, BET, etc., and TGA was used to investigate the amount of CO2 adsorption. According to the results of the first part of the study, it was found that the CaO modified by the amino group-containing polymer had a significant increase in the amount of cyclic adsorption, and the effect of dopamine modification was the best; and from the second part, the addition of aluminum was used for modification. The CaO with the Al:Ca=1:5 has the best cyclic adsorption effect. This experiment uses wastes commonly found in daily life: eggshells, aluminum cans, scrap iron, etc. to synthesize and modify CaO to solve the problem of CO2 emissions, and the way to recycle and reuse waste. It also fully demonstrates the practice of green chemistry.
目錄
摘要 ii
Abstract iii
第一章 前言 1
1-1 研究起緣 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 廢棄材料 3
2-1-1 蛋殼 3
2-1-2 廢五金 4
2-1-3 鋁罐 4
2-2綠色化學 5
2-3 溫室效應議題探討 6
2-3-1 溫室效應 6
2-3-2 溫室氣體 8
2-4 二氧化碳捕獲技術 9
2-4-1 化學吸收法 9
2-4-2 物理吸附法 10
2-4-3 薄膜分離法 10
2-4-4 固態化學吸收法 10
2-5 二氧化碳吸附材料選擇 12
2-6 氧化鈣劣化之探討 14
2-7 氧化鈣改質之探討 16
第三章 實驗部分 18
3-1 熱重分析儀(Thermogravimetric Analysis,TGA) 18
3-1-1 TGA原理 18
3-1-2使用儀器與型號 21
3-2 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 21
3-2-1 SEM原理 21
3-2-2使用儀器與型號 22
3-3 X-Ray粉末繞射儀(X-Ray Diffraction,XRD) 22
3-3-1 XRD原理 22
3-3-2 使用儀器與參數設定 23
3-4 比表面積與孔隙度分析儀(Specific Surface Area and Porosimetry Analyzer,BET) 24
3-5 傅立葉轉換紅外光譜儀(Fourier-Transform Infrared Spectroscopy,FTIR) 28
3-5-1 FTIR原理 28
3-5-2 使用儀器與參數設定 29
3-6 實驗材料 30
3-6-1 蛋殼 30
3-6-2 廢鐵 30
3-6-3鋁罐 30
3-7 實驗藥品 31
3-8 實驗步驟 32
3-9 特徵分析之樣品製備及儀器操作 38
第四章 實驗結果與討論 39
4-1 不同前驅物製備氧化鈣之探討 39
4-1-1 蛋殼製備氧化鈣 39
4-1-2 市售樣品製備氧化鈣 42
4-1-3 不同前驅物製備氧化鈣結論 44
4-2 表面修飾之氧化鈣的探討 45
4-2-1 利用界面活性劑修飾氧化鈣 46
4-2-2 利用氨基高分子修飾氧化鈣 49
4-2-3 表面修飾之氧化鈣結論 62
4-3 摻雜抗燒結材料之氧化鈣的探討 64
4-3-1 摻雜鋁前驅物改質氧化鈣 64
4-3-2 摻雜鐵前驅物改質氧化鈣 67
4-3-3 摻雜抗燒結材料之氧化鈣結論 71
第五章 結論與未來建議 74
5-1 結論 74
5-2 未來建議 75
第六章 參考文獻 76















圖目錄
圖 2-1. 日常生活廢棄物蛋殼 3
圖 2-2. 綠色化學12項原則 6
圖 2-3. 溫室效應機制示意圖[14] 7
圖 2-4. 大氣中二氧化碳濃度[15] 7
圖 2-5. 溫室氣體影響百分比[16] 8
圖 2-6. 各個產業所排碳比例 8
圖 2-7. 不同國家總排碳量的比較[17] 8
圖 2-8. 吸收塔槽示意圖[19] 9
圖 2-9. 鈣迴路示意圖[26] 11
圖 2-10. 氧化鈣吸附二氧化碳機制[30] 13
圖 2-11. 孔洞燒結示意圖[41] 14
圖 2-12. 多次循環吸附後氧化鈣示意圖[42] 14
圖 2-13. 反應溫度高於坦曼溫度造成團聚現象 15
圖 2-14. 孔隙骨架模型示意圖[49] 16
圖 2-15. 金屬氧化物摻雜示意圖[52] 17
圖 2-16. 抗燒結劑主要機制[53] 17
圖 3-1. 熱重分析圖[54] 18
圖 3-2. 熱重分析儀裝置示意圖[55] 19
圖 3-3. 補償式天平式意圖[56] 19
圖 3-4. 熱重分析儀 21
圖 3-5. 掃描式電子顯微鏡 22
圖 3-6. 布拉格繞射示意圖[59] 23
圖 3-7. X光粉末繞射儀 23
圖 3-8. BET方程式線性擬合示意圖 25
圖 3-9. IUPAC歸納出來的六種等溫吸附曲線[61] 26
圖 3-10. IUPAC的四種遲滯曲線[62] 27
圖 3-11. ATR-FTIR原理[63] 29
圖 3-12. 衰減全反射傅立葉轉換紅外光譜儀 29
圖 3-13. 本次實驗所使用的廢棄材料 30
圖 3-14. 氧化鈣製備流程 32
圖 3-15. 氧化鈣表面修飾流程 33
圖 3-16. 鐵前驅物合成流程 34
圖 3-17. 鋁前驅物合成流程 35
圖 3-18. 抗燒結材料摻雜流程 36
圖 3-19. TGA裝置示意圖 37
圖 3-20. 升、降溫方法流程圖 37
圖 4-1. 不同前驅物製備成氧化鈣之XRD光譜 40
圖 4-2. 蛋殼前驅物製備氧化鈣循環吸附圖 41
圖 4-3. 蛋殼前驅物製備氧化鈣10次吸附前後形貌變化SEM圖。 42
圖 4-4. 市售前驅物製備氧化鈣循環吸附圖 43
圖 4-5. 市售前驅物製備氧化鈣10次吸附前後形貌變化SEM圖。 44
圖 4-6. 市售、蛋殼前驅物製備氧化鈣循環吸附圖 45
圖 4-7. 不同界面活性劑修飾氧化鈣之XRD光譜 46
圖 4-8. 界面活性劑修飾之氧化鈣循環吸附圖 47
圖 4-9. 界面活性劑機制探討示意圖 48
圖 4-10界面活性劑修飾氧化鈣10次吸附前後形貌變化SEM圖. 49
圖 4-11. 氨基高分子聚合物修飾氧化鈣之XRD光譜 50
圖 4-12. Tris修飾過後的氫氧化鈣FTIR光譜 51
圖 4-13. PEI修飾過後的氫氧化鈣FTIR光譜 52
圖 4-14. PDA修飾過後的氫氧化鈣FTIR光譜 53
圖 4-15. Tris、PEI、PDA修飾過後的氧化鈣FTIR光譜 54
圖 4-16. 含氨基高分子聚合物修飾之氧化鈣循環吸附圖 55
圖 4-17. 含氨基高分子聚合物修飾機制探討 56
圖 4-18. 含氨基高分子聚合物修飾氧化鈣10次吸附前後形貌變化SEM圖 57
圖 4.19. 經由BET線性擬合得到之方程式 58
圖 4-20. IUPAC歸納出來的六種等溫吸附曲線[61] 60
圖4-21. 經過不同修飾之氧化鈣吸、脫附等溫線 61
圖4-22. IUPAC的四種遲滯曲線[62] 62
圖 4-23. 經由表面修飾之氧化鈣循環吸附圖 63
圖 4-24. 摻雜不同比例鋁前驅物修飾氧化鈣之XRD光譜 65
圖 4-25. 摻雜不同比例鋁前驅物之氧化鈣循環吸附圖 66
圖 4-26. 摻雜不同比例鋁前驅物之氧化鈣10次吸附前後形貌變化SEM圖 67
圖 4-27. 摻雜不同比例鐵前驅物修飾氧化鈣之XRD光譜 68
圖 4-28. 摻雜不同比例鐵前驅物之氧化鈣循環吸附圖 69
圖 4-29. 摻雜不同金屬氧化物對氧化鈣吸附劑的影響 69
圖 4-30. 摻雜不同比例鐵前驅物之氧化鈣10次吸附前後形貌變化SEM圖 70
圖 4-31. 摻雜金屬氧化物之氧化鈣循環吸附圖 71








表目錄
表 2-1. 各種吸附劑對二氧化碳的吸附情況[31] 13
表 2-2. 金屬氧化物坦曼溫度列表[30] 15
表 3-1. 表面修飾製備表格 34
表 4-1. 蛋殼前驅物製備氧化鈣循環吸附量 41
表 4-2. 市售前驅物製備氧化鈣循環吸附量 43
表 4-3. 市售、蛋殼前驅物製備氧化鈣循環吸附量 45
表 4-4. 界面活性劑修飾之氧化鈣循環吸附量 47
表 4-5. Tris修飾過後之氫氧化鈣特徵峰對應振動 51
表 4-6. PEI修飾過後之氫氧化鈣特徵峰對應振動 52
表 4-7. PDA修飾過後之氫氧化鈣特徵峰對應振動 53
表 4-8. Tris、PEI、PDA修飾過後的氧化鈣特徵峰對應振動 54
表 4-9. 含氨基高分子聚合物修飾之氧化鈣循環吸附量 56
表 4-10. 經過不同修飾之氧化鈣BET分析 59
表 4-11. IUPAC孔洞大小的分類[75] 60
表 4-12. 經由表面修飾之氧化鈣循環吸附量 63
表 4-13. 摻雜不同比例鋁前驅物之氧化鈣循環吸附量 66
表 4-14. 摻雜不同比例鐵前驅物之氧化鈣循環吸附量 69
表 4-15. 摻雜金屬氧化物氧化鈣循環吸附量 72
表 4-16. 經過改質後氧化鈣循環吸附量 73
1.Li, B.; Duan, Y.; Luebke, D.; Morreale, B., Advances in CO2 capture technology: A patent review. Applied Energy 2013, 102, 1439-1447.
2.Song, C., Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today 2006, 115 (1), 2-32.
3.Yeh, J. T.; Pennline, H. W.; Resnik, K. P., Study of CO2 Absorption and Desorption in a Packed Column. Energy & Fuels 2001, 15 (2), 274-278.
4.Powell, C. E.; Qiao, G. G., Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science 2006, 279 (1), 1-49.
5.Liu, W.; An, H.; Qin, C.; Yin, J.; Wang, G.; Feng, B.; Xu, M., Performance Enhancement of Calcium Oxide Sorbents for Cyclic CO2 Capture—A Review. Energy & Fuels 2012, 26 (5), 2751-2767.
6.Lasheras, A.; Ströhle, J.; Galloy, A.; Epple, B., Carbonate looping process simulation using a 1D fluidized bed model for the carbonator. International Journal of Greenhouse Gas Control 2011, 5 (4), 686-693.
7.Kierzkowska, A. M.; Poulikakos, L. V.; Broda, M.; Müller, C. R., Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2 capture using a co-precipitation technique. International Journal of Greenhouse Gas Control 2013, 15, 48-54.
8.Tsai, W.-T.; Hsien, K.-J.; Hsu, H.-C.; Lin, C.-M.; Lin, K.-Y.; Chiu, C.-H., Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution. Bioresource Technology 2008, 99 (6), 1623-1629.
9.行政院環境保護署基管會, 資源回收好用心 全民合作享綠金. 2018.
10.熊其娟, 廢鐵的春天!開發城市礦山. 2016.
11.Mühle, J.; Ganesan, A. L.; Miller, B. R.; Salameh, P. K.; Harth, C. M.; Greally, B. R.; Rigby, M.; Porter, L. W.; Steele, L. P.; Trudinger, C. M.; Krummel, P. B.; O''Doherty, S.; Fraser, P. J.; Simmonds, P. G.; Prinn, R. G.; Weiss, R. F., Perfluorocarbons in the global atmosphere: tetrafluoromethane, hexafluoroethane, and octafluoropropane. Atmos. Chem. Phys. 2010, 10 (11), 5145-5164.
12.Anastas, P. T. W., J. C., Green Chemistry: Theory and Practice. Oxford 2000.
13.Ho, S.-H.; Chen, C.-Y.; Lee, D.-J.; Chang, J.-S., Perspectives on microalgal CO2-emission mitigation systems — A review. Biotechnology Advances 2011, 29 (2), 189-198.
14.Sridharan, K., Emerging Trends of Nanotechnology in Environment and Sustainability A Review-Based Approach. 2018.
15.Blueskieadmin, Carbon Dioxide at 400 ppm: What Does It Mean? 2015.
16.Deluisi, B., Measuring & Analyzing Greenhouse Gases: Behind the Scenes. 2009.
17.Napp, T. A.; Gambhir, A.; Hills, T. P.; Florin, N.; Fennell, P. S., A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries. Renewable and Sustainable Energy Reviews 2014, 30, 616-640.
18.Fytianos, G.; Ucar, S.; Grimstvedt, A.; Hyldbakk, A.; Svendsen, H. F.; Knuutila, H. K., Corrosion and degradation in MEA based post-combustion CO2 capture. International Journal of Greenhouse Gas Control 2016, 46, 48-56.
19.Afkhamipour, M.; Mofarahi, M., Review on the mass transfer performance of CO2 absorption by amine-based solvents in low- and high-pressure absorption packed columns. RSC Advances 2017, 7 (29), 17857-17872.
20.Aaron, D.; Tsouris, C., Separation of CO2 from Flue Gas: A Review. Separation Science and Technology 2005, 40 (1-3), 321-348.
21.談駿嵩、王志盈, 二氧化碳捕獲. 科學發展 2015, 6.
22.Erans, M.; Manovic, V.; Anthony, E. J., Calcium looping sorbents for CO2 capture. Applied Energy 2016, 180, 722-742.
23.Valverde, J. M.; Sanchez-Jimenez, P. E.; Perez-Maqueda, L. A., Calcium-looping for post-combustion CO2 capture. On the adverse effect of sorbent regeneration under CO2. Applied Energy 2014, 126, 161-171.
24.Perejón, A.; Romeo, L. M.; Lara, Y.; Lisbona, P.; Martínez, A.; Valverde, J. M., The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior. Applied Energy 2016, 162, 787-807.
25.Zhao, M.; Minett, A. I.; Harris, A. T., A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2. Energy & Environmental Science 2013, 6 (1), 25-40.
26.Abanades, J. C., 21 - Calcium looping for CO2 capture in combustion systems. In Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification, Scala, F., Ed. Woodhead Publishing: 2013; pp 931-970.
27.Tian, S.; Jiang, J.; Yan, F.; Li, K.; Chen, X.; Manovic, V., Highly efficient CO2 capture with simultaneous iron and CaO recycling for the iron and steel industry. Green Chemistry 2016, 18 (14), 4022-4031.
28.Yan, F.; Jiang, J.; Li, K.; Liu, N.; Chen, X.; Gao, Y.; Tian, S., Green Synthesis of Nanosilica from Coal Fly Ash and Its Stabilizing Effect on CaO Sorbents for CO2 Capture. Environmental Science & Technology 2017, 51 (13), 7606-7615.
29.Wang, K.; Zhao, P.; Guo, X.; Han, D.; Chao, Y., High-temperature CO2 capture cycles of hydrated limestone prepared with aluminum (hydr)oxides derived from kaolin. Energy Conversion and Management 2014, 86, 1147-1153.
30.Phromprasit, J.; Powell, J.; Assabumrungrat, S., Metals (Mg, Sr and Al) modified CaO based sorbent for CO2 sorption/desorption stability in fixed bed reactor for high temperature application. Chemical Engineering Journal 2016, 284, 1212-1223.
31.陳奕岑, 以改質氧化鈣捕獲二氧化碳氣體之循環再生能力研究. 2008.
32.Przepiórski, J.; Skrodzewicz, M.; Morawski, A. W., High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Applied Surface Science 2004, 225 (1), 235-242.
33.Majchrzak-Kucęba, I.; Nowak, W., A thermogravimetric study of the adsorption of CO2 on zeolites synthesized from fly ash. Thermochimica Acta 2005, 437 (1), 67-74.
34.Xu, X.; Song, C.; Miller, B. G.; Scaroni, A. W., Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent. Fuel Processing Technology 2005, 86 (14), 1457-1472.
35.Abanades, J. C.; Alvarez, D., Conversion Limits in the Reaction of CO2 with Lime. Energy & Fuels 2003, 17 (2), 308-315.
36.Feng, B.; An, H.; Tan, E., Screening of CO2 Adsorbing Materials for Zero Emission Power Generation Systems. Energy & Fuels 2007, 21 (2), 426-434.
37.Y.J. Wang, L. Q., and W.J. Jiang, "CO2 absorption of Li4SiO4 at high temperature". Chinese Journal of Inorganic Chemistry 2006, Vol.22(2), 268-272.
38.Xiong, R.; Ida, J.; Lin, Y. S., Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chemical Engineering Science 2003, 58 (19), 4377-4385.
39.Gupta, K.; Singh, S.; Ramachandra Rao, M. S., Fast, reversible CO2 capture in nanostructured Brownmillerite CaFeO2.5. Nano Energy 2015, 11, 146-153.
40.Liu, W.; Feng, B.; Wu, Y.; Wang, G.; Barry, J.; Diniz da Costa, J. C., Synthesis of Sintering-Resistant Sorbents for CO2 Capture. Environmental Science & Technology 2010, 44 (8), 3093-3097.
41.Chen, M.; Wang, N.; Yu, J.; Yamaguchi, A., Effect of porosity on carbonation and hydration resistance of CaO materials. Journal of the European Ceramic Society 2007, 27 (4), 1953-1959.
42.Lysikov, A. I.; Salanov, A. N.; Okunev, A. G., Change of CO2 Carrying Capacity of CaO in Isothermal Recarbonation−Decomposition Cycles. Industrial & Engineering Chemistry Research 2007, 46 (13), 4633-4638.
43.Okazaki, J.; Ikeda, T.; Tanaka, D. A. P.; Sato, K.; Suzuki, T. M.; Mizukami, F., An investigation of thermal stability of thin palladium–silver alloy membranes for high temperature hydrogen separation. Journal of Membrane Science 2011, 366 (1), 212-219.
44.Chotirach, M.; Tantayanon, S.; Tungasmita, S.; Kriausakul, K., Zr-based intermetallic diffusion barriers for stainless steel supported palladium membranes. Journal of Membrane Science 2012, 405-406, 92-103.
45.Broda, M.; Kierzkowska, A. M.; Müller, C. R., 4 - Synthetic calcium oxide-based carbon dioxide sorbents for calcium looping processes. In Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture, Fennell, P.; Anthony, B., Eds. Woodhead Publishing: 2015; 51-72.
46.Islam, A.; Teo, S. H.; Chan, E. S.; Taufiq-Yap, Y. H., Enhancing the sorption performance of surfactant-assisted CaO nanoparticles. RSC Advances 2014, 4 (110), 65127-65136.
47.Wang, S.; Fan, L.; Li, C.; Zhao, Y.; Ma, X., Porous Spherical CaO-based Sorbents via PSS-Assisted Fast Precipitation for CO2 Capture. ACS Applied Materials & Interfaces 2014, 6 (20), 18072-18077.
48.Materic, V.; Hyland, M.; Jones, M. I.; Northover, B., High Temperature Carbonation of Ca(OH)2: The Effect of Particle Surface Area and Pore Volume. Industrial & Engineering Chemistry Research 2014, 53 (8), 2994-3000.
49.Manovic, V.; Anthony, E. J., Thermal Activation of CaO-Based Sorbent and Self-Reactivation during CO2 Capture Looping Cycles. Environmental Science & Technology 2008, 42 (11), 4170-4174.
50.Broda, M.; Kierzkowska, A. M.; Müller, C. R., Development of Highly Effective CaO-based, MgO-stabilized CO2 Sorbents via a Scalable “One-Pot” Recrystallization Technique. Advanced Functional Materials 2014, 24 (36), 5753-5761.
51.Liu, F.-Q.; Li, W.-H.; Liu, B.-C.; Li, R.-X., Synthesis, characterization, and high temperature CO2 capture of new CaO based hollow sphere sorbents. Journal of Materials Chemistry A 2013, 1 (27), 8037-8044.
52.Diana, F.; Vignesh, K.; Sreekantan, S.; Mohamed, A., Improved CO2 adsorption capacity and cyclic stability of CaO sorbents incorporated with MgO. 2015; Vol. 40.
53.Zhao, M.; Shi, J.; Zhong, X.; Tian, S.; Blamey, J.; Jiang, J.; Fennell, P. S., A novel calcium looping absorbent incorporated with polymorphic spacers for hydrogen production and CO2 capture. Energy & Environmental Science 2014, 7 (10), 3291-3295.
54.Jeong, J.-S.; 이영석, T. A. L. Y.-S.; Ryu, S. K., 2009, 10.
55.陳到達,熱分析,渤海堂文化事業有限公司,台北,1992
56.Loganathan, S.; Ravi babu, V.; Mishra, R.; Pugazhenthi, G.; Thomas, S., Thermogravimetry Analysis for Characterization of Nanomaterials. 2017.
57.Young, R. A.; Kalin, R. V., Scanning Electron Microscopic Techniques for Characterization of Semiconductor Materials. In Microelectronics Processing: Inorganic Materials Characterization, American Chemical Society: 1986; Vol. 295, pp 49-74.
58.Reimschuessel, A. C., Scanning electron microscopy - Part I. Journal of Chemical Education 1972, 49 (8), A413.
59.Redecke, L.; Nass, K.; DePonte, D. P.; White, T. A.; Rehders, D.; Barty, A.; Stellato, F.; Liang, M.; Barends, T. R. M.; Boutet, S.; Williams, G. J.; Messerschmidt, M.; Seibert, M. M.; Aquila, A.; Arnlund, D.; Bajt, S.; Barth, T.; Bogan, M. J.; Caleman, C.; Chao, T.-C.; Doak, R. B.; Fleckenstein, H.; Frank, M.; Fromme, R.; Galli, L.; Grotjohann, I.; Hunter, M. S.; Johansson, L. C.; Kassemeyer, S.; Katona, G.; Kirian, R. A.; Koopmann, R.; Kupitz, C.; Lomb, L.; Martin, A. V.; Mogk, S.; Neutze, R.; Shoeman, R. L.; Steinbrener, J.; Timneanu, N.; Wang, D.; Weierstall, U.; Zatsepin, N. A.; Spence, J. C. H.; Fromme, P.; Schlichting, I.; Duszenko, M.; Betzel, C.; Chapman, H. N., Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser. Science 2013, 339 (6116), 227.
60.Brunauer, S., P. H. Emmett, E. J. Teller. J. Am. Chem. Soc 1938,60.
61.F. Rouquerol, J. R. a. K. S., Adsorption by powders and porous solids. Academic Press 1999.
62.Wang, W.; Liu, P.; Zhang, M.; Hu, J.; Xing, F., The Pore Structure of Phosphoaluminate Cement. Open Journal of Composite Materials 2012, Vol.02No.03, 9.
63.Mohamed Faycal Atitar, H. B., Ralf Dillert and Detlef W. Bahnemann, The Relevance of ATR-FTIR Spectroscopy in Semiconductor Photocatalysis. 2015.
64.Gedda, G.; Pandey, S.; Lin, Y.-C.; Wu, H.-F., Antibacterial effect of calcium oxide nano-plates fabricated from shrimp shells. Green Chemistry 2015, 17 (6), 3276-3280.
65.Mhamane, D.; Kim, H.-K.; Aravindan, V.; Roh, K. C.; Srinivasan, M.; Kim, K.-B., Rusted iron wire waste into high performance anode (α-Fe2O3) for Li-ion batteries: an efficient waste management approach. Green Chemistry 2016, 18 (5), 1395-1404.
66.Vadiyar, M. M.; Liu, X.; Ye, Z., Utilizing Waste Thermocol Sheets and Rusted Iron Wires to Fabricate Carbon–Fe3O4 Nanocomposite-Based Supercapacitors: Turning Wastes into Value-Added Materials. ChemSusChem 2018, 11 (14), 2410-2420.
67.張馨云, 由廢鋁罐製備明礬. 2016.
68.Roy, A.; Gauri, S. S.; Bhattacharya, M.; Bhattacharya, J., Antimicrobial Activity of CaO Nanoparticles. Journal of Biomedical Nanotechnology 2013, 9 (9), 1570-1578.
69.Barhoum, A.; Rahier, H.; Abou-Zaied, R. E.; Rehan, M.; Dufour, T.; Hill, G.; Dufresne, A., Effect of Cationic and Anionic Surfactants on the Application of Calcium Carbonate Nanoparticles in Paper Coating. ACS Applied Materials & Interfaces 2014, 6 (4), 2734-2744.
70.Witoon, T., Polyethyleneimine-loaded bimodal porous silica as low-cost and high-capacity sorbent for CO2 capture. Materials Chemistry and Physics 2012, 137 (1), 235-245.
71.Sompech, S.; Dasri, T.; Thaomola, S., Preparation and Characterization of Amorphous Silica and Calcium Oxide from Agricultural Wastes. Oriental Journal of Chemistry 2016, 32 (4), 1923-1928.
72.Kalinkin, A. M.; Kalinkina, E. V.; Zalkind, O. A.; Makarova, T. I., Chemical Interaction of Calcium Oxide and Calcium Hydroxide with CO2 during Mechanical Activation. Inorganic Materials 2005, 41 (10), 1073-1079.
73.Xiao, Y.; Zai, J.; Li, X.; Gong, Y.; Li, B.; Han, Q.; Qian, X., Polydopamine functionalized graphene/NiFe2O4 nanocomposite with improving Li storage performances. Nano Energy 2014, 6, 51-58.
74.Deng, M.; Zhao, H.; Zhang, S.; Tian, C.; Zhang, D.; Du, P.; Liu, C.; Cao, H.; Li, H., High catalytic activity of immobilized laccase on core–shell magnetic nanoparticles by dopamine self-polymerization. Journal of Molecular Catalysis B: Enzymatic 2015, 112, 15-24.
75.Slabaugh, W. H., A short textbook of colloid chemistry (Jirgensons, B.; Straumanis, M. E.). Journal of Chemical Education 1962, 39 (12), 656.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top