跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/27 05:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭煒蓁
研究生(外文):Wei-Chen Cheng
論文名稱:聚苯胺包覆多孔性碳球之合成與鑑定及在鋰硫電池上的應用
論文名稱(外文):Synthesis and Characterization of polyaniline-coated on porous carbon spheres and their applications in lithium-sulfur battery
指導教授:李志聰
指導教授(外文):Jyh-Tsung Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:84
中文關鍵詞:多孔性碳球穿梭效應導電高分子聚苯胺正極材料鋰硫電池
外文關鍵詞:lithium-sulfur batteryporous carbon spherecathode materialsshuttle phenomenonconductive polymer polyaniline
相關次數:
  • 被引用被引用:1
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋰硫電池具有高於市售正極材料的理論電容量,且蘊藏豐富、價格低廉,取代目前的正極材料是非常有潛力的,但硫也同時擁有致命的缺點稱為穿梭效應,在充放電過程中生成的鋰多硫化物會溶解在電解液中,導致硫正極的活性物質減少使循環壽命衰退很快,同時,硫本質導電性差的問題以及充放電後體積膨脹導致材料結構被破壞的問題。因此本篇論文使用聚苯胺這種導電高分子塗佈在硫-多孔碳球複合材料上,防止鋰多硫化物溶解在電解液中,並且利用多孔碳球的特性,藉此改善硫的導電性及體積膨脹的問題。利用紅外線光譜儀、拉曼光譜儀、掃描式電子顯微鏡以及穿透式電子顯微鏡證明聚苯胺確實塗佈在硫-多孔碳球複合材料上,利用熱重分析儀測量硫-聚苯胺/多孔碳球實際的含硫量,間接確認聚苯胺確實塗佈在硫-多孔碳球複合材料上。鋰硫電池的循環壽命測試中,硫-聚苯胺/多孔碳球的效果比硫/多孔碳球佳,而硫-聚苯胺/多孔碳球擁有 51.33% 的電容保持率,證明硫-聚苯胺/多孔碳球能有效的增加硫的利用率及改善循環壽命。
Lithium-sulfur (Li-S) batteries have a higher theoretical energy capacity than commercial cathode materials. In addition, sulfur is abundant in nature and low-cost, which is a good candidate as a cathode-active material. However, during the charge/discharge process, lithium polysulfides are generated, which can be dissolved in electrolytes to reduce the energy capacity of the sulfur electrode. Meanwhile, electrical conductivity of sulfur is poor, which increases the electrical resistance of the electrode. Besides, the volume change of sulfur is huge during the charge/discharge process, which destroys the structure of the sulfur electrode. Therefore in this study, a conducting polymer such as polyaniline (PANI) is utilized for coating on the sulfur-porous carbon sphere composite to prevent the dissolution of lithium polysulfides into the electrolyte. Infrared (IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques are performed to confirm that PANI is indeed coated on the sulfur-porous carbon sphere composite. The actual sulfur content of sulfur-polyaniline/porous carbon sphere composite is measured by thermogravimetric analysis (TGA). The cycle-life performance of the Li-S battery with the PANI coated sulfur-porous carbon sphere composite is better than that with the pure sulfur-porous carbon sphere composite. The PANI coated composite displayed a capacity retention of 51.33%, which indicates that the sulfur-polyaniline/porous carbon sphere composite can increase sulfur utilization rate and improve the cycle-life performance of the batteries.
論文審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖次 viii
表次 xi
第一章 緒論 1
1.1 前言 2
1.2 研究動機 3
第二章 文獻回顧 4
2.1 鋰離子電池 5
2.1.1 鋰離子電池近代發展 5
2.1.2 工作原理 6
2.1.3 正極材料比較 7
2.2 鋰硫電池 8
2.2.1 工作原理 8
2.2.2 鋰硫電池面臨的挑戰 10
2.2.3 正極材料的改善 11
2.3 多孔性材料 13
2.3.1 材料介紹 13
2.3.2 聚合物多孔微球 13
2.3.3 溶劑揮發法與多孔微球的形成 14
2.4 導電高分子 15
2.4.1 材料介紹 15
2.4.2 聚苯胺 Polyaniline 聚合反應機構 15
第三章 實驗藥品與儀器 18
3.1 實驗藥品與器具 19
3.2 儀器型號 21
3.3 儀器型號與實驗條件 22
第四章 實驗步驟 26
4.1 正極材料改善方法 27
4.1.1 合成 poly(styrene-co-vinylbenyl chloride) 27
4.1.2 製作硫導電高分子/多孔碳球複合材料 28
4.1.3 製備多孔碳球 28
4.1.4 製備硫-多孔碳球複合材料 ( S-P ) 29
4.1.5 純化苯胺 29
4.1.6 製備硫-導電高分子/多孔碳球複合材料 ( S-P-P ) 29
4.1.7 將硫-導電高分子/多孔碳球進行熱處理產生硫-碳鍵結 29
4.2 組成電池 30
4.2.1 混漿 30
4.2.2 組成電池進行測試 31
第五章 結果與討論 33
5.1 液態核磁共振儀 (Nuclear Magnetic Resonance) 34
5.2 多孔碳球塗布聚苯胺之掃描式電子顯微鏡圖 ( Scanning Electron Microscope ) 35
5.2.1 電子顯微鏡圖 35
5.2.2 能量色散分析圖 ( EDS ) 38
5.3 多孔碳球塗布聚苯胺之穿透式電子顯微鏡圖 ( Transmission electron microscope ) 41
5.4 紅外線光譜 ( Infrared Spectroscopy ) 42
5.5 拉曼光譜 ( Raman Spectroscopy ) 45
5.6 熱重分析 ( Thermogravimetric Analysis ) 47
5.7 循環壽命測試 ( Cycle Life ) 49
5.8 定電流充放電 ( C-rate ) 52
5.9 循環伏安法 ( Cyclic Voltammetry ) 57
5.10 交流阻抗 ( AC Impedance ) 60
5.11 材料結構掃描式電子顯微鏡檢測 61
第六章 結論 62
第七章 參考文獻 64
第八章 附錄 68
8.1 循環壽命 ( Cycle Life ) 69
8.1.1 疊圖比較 69
8.1.2 放電電容量保持率 69
1.The Basic of Battery Chemistry, in Principles and Applications of Lithium Secondary Batteries. p. 9-19.
2.Lithium Ion technical handbook. Gold Peak Industries Ltd. 2003.
3.Fedorková, A. S.; Oriňáková, R.; Sedlaříková, M.; New Composite Cathode Materials for Li/S Batteries: A Review. International Journal of Electrochemical Science. 2013, 8, 10308-10319.
4.Chen, L. and L.L. Shaw, Recent advances in lithium–sulfur batteries. Journal of Power Sources, 2014. 267: p. 770-783.
5.Ogoke, O., et al., Effective strategies for stabilizing sulfur for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2017. 5(2): p. 448-469.
6.Manthiram, A., et al., Rechargeable Lithium–Sulfur Batteries. Chemical Reviews, 2014. 114(23): p. 11751-11787.
7.Diao, Y., et al., Analysis of Polysulfide Dissolved in Electrolyte in Discharge-Charge Process of Li-S Battery. Vol. 159. 2012. A421.
8.Liang, X., et al., Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. Journal of Power Sources, 2011. 196(22): p. 9839-9843.
9.Son, Y., et al., Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries. Advanced Energy Materials, 2015. 5(16): p. 1500110.
10.Jia-jia, C., et al., The preparation of nano-sulfur/MWCNTs and its electrochemical performance. Electrochimica Acta, 2010. 55(27): p. 8062-8066.
11.Wang, H., et al., Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability. Nano Letters, 2011. 11(7): p. 2644-2647.
12.Wang, J.L., et al., Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochemistry Communications, 2002. 4(6): p. 499-502.
13.Seh, Z.W., et al., Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chemical Science, 2013. 4(9): p. 3673-3677.
14.Li, W., et al., Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance. Nano Letters, 2013. 13(11): p. 5534-5540.
15.Min-Sang Song, S.-C.H., Hyun-Seok Kim, Jin-Ho Kim, Ki-Tae Kim, Yong-Mook Kang, Hyo-Jun Ahn, S. X. Dou and Jai-Young Lee, Effects of Nanosized Adsorbing Material on Electrochemical Properties of Sulfur Cathodes for Li/S Secondary Batteries. Journal of The Electrochemical Society, 2004. 151: p. A791.
16.Yang, Y., et al., High-Capacity Micrometer-Sized Li2S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries. Journal of the American Chemical Society, 2012. 134(37): p. 15387-15394.
17.楊昇,苯乙烯共聚物多孔微球之製備方法研究,國立台北科技大學材料工程研究所碩士論文,2015年7月.
18.謝昌儒,多孔性微球形成機制探討及在鋰硫電池上的應用,國立中山大學化學研究所碩士論文,2017年6月.
19.Introduction, in Conducting Polymers: A New Era in Electrochemistry. 2008, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1-6.
20.Wang, H.-L., et al., Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber. Journal of Polymer Science Part B: Polymer Physics, 2000. 38(1): p. 194-204.
21.Jang, J., J.H. Oh, and G.D. Stucky, Fabrication of Ultrafine Conducting Polymer and Graphite Nanoparticles. Angewandte Chemie International Edition, 2002. 41(21): p. 4016-4019.
22.McCullough, R.D., et al., Self-orienting head-to-tail poly(3-alkylthiophenes): new insights on structure-property relationships in conducting polymers. Journal of the American Chemical Society, 1993. 115(11): p. 4910-4911.
23.Albuquerque, J.E., et al., A simple method to estimate the oxidation state of polyanilines. Synthetic Metals, 2000. 113(1): p. 19-22.
24.李怡萱,酸與鹼催化空氣氧化固態聚苯胺之現象與機制探討,國立清華大學化學研究所博士論文,2008年8月.
25.Li, C.-C., et al., Newly Designed Copolymers for Fabricating Particles with Highly Porous Architectures. Chemistry of Materials, 2016. 28(17): p. 6089-6095.
26.Li, Q., et al., Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Chemical Communications, 2016. 52(92): p. 13479-13482.
27.Scheers, J., S. Fantini, and P. Johansson, A review of electrolytes for lithium–sulphur batteries. Journal of Power Sources, 2014. 255: p. 204-218.
28.Ma, G., et al., Hollow polyaniline sphere@sulfur composites for prolonged cycling stability of lithium–sulfur batteries. Journal of Materials Chemistry A, 2014. 2(27): p. 10350-10354.
29.Tang, Z., et al., Polyaniline-Coated Activated Carbon Aerogel/Sulfur Composite for High-performance Lithium-Sulfur Battery. Nanoscale Research Letters, 2017. 12(1): p. 617.
30.Li, G.-C., et al., A Polyaniline-Coated Sulfur/Carbon Composite with an Enhanced High-Rate Capability as a Cathode Material for Lithium/Sulfur Batteries. Advanced Energy Materials, 2012. 2(10): p. 1238-1245.
31.Zhou, W., et al., Yolk–Shell Structure of Polyaniline-Coated Sulfur for Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2013. 135(44): p. 16736-16743.
32.Xiao, L., et al., A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium-Sulfur Batteries with Long Cycle Life. Advanced Materials, 2012. 24(9): p. 1176-1181.
33.Zhang, K., et al., A graphene oxide-wrapped bipyramidal sulfur@polyaniline core–shell structure as a cathode for Li–S batteries with enhanced electrochemical performance. Journal of Materials Chemistry A, 2016. 4(17): p. 6404-6410.
34.Tsao, C.-H., et al., Vulcanized polymeric cathode material featuring a polyaniline skeleton for high-rate rechargeability and long-cycle stability lithium-sulfur batteries. Electrochimica Acta, 2018. 276: p. 111-117.
35.Deng, H., et al., Facile assembly of a S@carbon nanotubes/polyaniline/graphene composite for lithium–sulfur batteries. RSC Advances, 2017. 7(16): p. 9819-9825.
36.Zhu, H., S. Peng, and W. Jiang, Electrochemical Properties of PANI as Single Electrode of Electrochemical Capacitors in Acid Electrolytes, The Scientific World Journal. 2013. 2013: p. 8.
37.Hyun, J., et al., A Simple Preparation of Polyaniline-coated Sulfur Composites for use as Cathodes in Li–S Batteries. Electrochemistry, 2016. 84(11): p. 836-841.
38.Kim, J.H., et al., Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur Batteries. Scientific Reports, 2015. 5: p. 8946.
電子全文 電子全文(網際網路公開日期:20240730)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊