|
1.Lieschke, G.J. and P.D. Currie, Animal models of human disease: zebrafish swim into view. Nat Rev Genet, 2007. 8(5): p. 353-67. 2.Gore, A.V., et al., Vascular Development in the Zebrafish. Cold Spring Harb Perspect Med, 2012. 2(5): p. a006684. 3.Howe, K., et al., The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): p. 498-503. 4.Batch, V.L., Stem cells and the vasculature. Nat Med, 2011. 17(11): p. 1437-43. 5.Ellertsdottir, E., et al., Vascular morphogenesis in the zebrafish embryo. Dev Biol, 2010. 341(1): p. 56-65. 6.Lawson, N.D. and B.M. Weinstein, Arteries and veins: making a difference with zebrafish. Nat Rev Genet, 2002. 3(9): p. 674-82. 7.Adams, R.H. and K. Alitalo, Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol, 2007. 8(6): p. 464-78. 8.Blanco, R. and H. Gerhardt, VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med, 2013. 3(1): p. a006569. 9.Wiley, D.M., et al., Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein. Nat Cell Biol, 2011. 13(6): p. 686-92. 10.Koch, S., et al., Signal transduction by vascular endothelial growth factor receptors. Biochem J, 2011. 437(2): p. 169-83. 11.Shibuya, M., Tyrosine Kinase Receptor Flt/VEGFR Family: Its Characterization Related to Angiogenesis and Cancer. Genes Cancer, 2010. 1(11): p. 1119-23. 12.Tammela, T., et al., Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature, 2008. 454(7204): p. 656-60. 13.Kume, T., Novel insights into the differential functions of Notch ligands in vascular formation. J Angiogenes Res, 2009. 1: p. 8. 14.Lee, C.Y., et al., Notch signaling functions as a cell-fate switch between the endothelial and hematopoietic lineages. Curr Biol, 2009. 19(19): p. 1616-22. 15.Leslie, J.D., et al., Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development, 2007. 134(5): p. 839-44. 16.Siekmann, A.F. and N.D. Lawson, Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature, 2007. 445(7129): p. 781-4. 17.Lawson, N.D., et al., Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development, 2001. 128(19): p. 3675-83. 18.Cai, J., et al., BMP signaling in vascular diseases. FEBS Lett, 2012. 586(14): p.1993-2002. 19.Wakayama, Y., et al., Cdc42 mediates Bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish. Dev Cell, 2015. 32(1): p. 109-22. 20.Zhang, Y.E., Non-Smad pathways in TGF-beta signaling. Cell Res, 2009. 19(1): p. 128-39. 21.Lu, Q., et al., Signaling Through Rho GTPase Pathway as Viable Drug Target. Curr Med Chem, 2009. 16(11): p. 1355–65. 22.Hanna, S. and M. El-Sibai, Signaling networks of Rho GTPases in cell motility. Cell Signal, 2013. 25(10): p. 1955–61. 23.Miki, H., et al., WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J, 1998. 17(23): p. 6932–41. 24.Machesky, L.M. and R.H. Insall, Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol, 1998. 8(25): p.1347-56. 25.Fletcher, D.A. and R.D. Mullins, Cell mechanics and the cytoskeleton. Nature, 2010. 463(7280): p. 485–92. 26.Zhang, Z., et al., Knockdown of WAVE1 enhances apoptosis of leukemia cells by downregulating autophagy. Int J Oncol, 2016. 48(6): p. 2647-56. 27.Ito, Y., et al., De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures. Am J Hum Genet, 2018. 103(1): p. 144-53. 28.Gong, C., et al., VEGF treatment induces signaling pathways that regulate both actin polymerization and depolymerization. Angiogenesis, 2004. 7(4): p. 313-21. 29.Fernando, H.S., et al., WASP and WAVE proteins: vital intrinsic regulators of cell motility and their role in cancer (review). Int J Mol Med, 2009. 23(2): p. 141-8. 30.Wu, W., et al., The role of netrin-1 in angiogenesis and diabetic retinopathy: a promising therapeutic strategy. Discov Med, 2017. 23(128): p. 315-23. 31.Thrasher, A.J. and S. Burns, Wiskott-Aldrich syndrome: a disorder of haematopoietic cytoskeletal regulation. Microsc Res Tech, 1999. 47(2): p. 107-13. 32.Saito, S., et al., Rho exchange factor ECT2 is induced by growth factors and regulates cytokinesis through the N-terminal cell cycle regulator-related domains. J Cell Biochem, 2003. 90(4): p. 819-36. 33.Tatsumoto, T., et al., Human ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis. J Cell Biol, 1999. 147(5): p. 921-8. 34.Nacak, T.G., et al., The BTB-Kelch protein KLEIP controls endothelial migration and sprouting angiogenesis. Circ Res, 2007. 100(8): p. 1155-63.
|